Chapter 1: Introduction
 1.1 Categorical Response Data

- Methods for response variable (a.k.a. outcome variable, dependent variable) Y whose measurement scale is a set of categories.
- Explanatory variables (a.k.a. predictors, covariates, independent variables) may be categorical or continuous or both. Generically denoted x_{1}, x_{2}, etc.

Example

$\mathrm{Y}=$ vote in election (Dem, Rep, Indep)
χ 's: $\underbrace{\text { income, }}_{\text {continuous }} \underbrace{\text { gender, race, }}_{\text {categorical }} \underbrace{\text { education }}_{\text {? }}$

Two Types of Categorical Variables

Nominal: unordered categories
Ordinal: ordered categories

Example

Nominal > transport to work (car, bus, bicycle, walk, other)

- favorite music (rock, hiphop, pop, classical, jazz, country, folk)
Ordinal > patient condition (excellent, good, fair, poor)
- government spending (too high, about right, too low)

We pay special attention to
Binary variables: success or failure
for which nominal-ordinal distinction is unimportant.

1.2 Probability Distributions for Categorical Data

For categorical response data, the binomial distribution (and its generalization, the multinomial distribution) plays a role similar to that of the normal distribution for continuous responses.

Binomial Distribution

- n Bernoulli trials: two possible outcomes for each trial (success, failure)
- $\pi=\operatorname{Pr}$ (success), $1-\pi=\operatorname{Pr}$ (failure), for each trial
- trials are independent
- $\mathrm{Y}=$ number of successes out of n trials
Y has a binomial distribution

When each trial has more than 2 possible outcomes, the joint distribution of the counts of outcomes in the various categories is a multinomial distribution (see text).

Probability Function of Binomial Distribution

$$
\begin{aligned}
P(y) & =\operatorname{Pr}(Y=y) \\
& =\frac{n!}{y!(n-y)!} \pi^{y}(1-\pi)^{n-y}, \quad y=0,1,2, \ldots, n
\end{aligned}
$$

where "y factorial" is given by

$$
y!=y(y-1)(y-2) \cdots 1 \text { with } 0!=1
$$

Cola Preference (Coke, Pepsi)
Suppose $\pi=\operatorname{Pr}($ Coke $)=0.6$.
Sample $\mathrm{n}=3$ tasters; let $\mathrm{y}=$ number preferring Coke among them.

$$
\begin{aligned}
& P(y)=\frac{3!}{y!(3-y)!}(.6)^{y}(.4)^{3-y} \\
& P(0)=\frac{3!}{0!3!}(.6)^{0}(.4)^{3}=(.4)^{3}=0.064 \\
& P(1)=\frac{3!}{1!2!}(.6)^{1}(.4)^{2}=3(.6)(.4)^{2}=0.288 \\
& \\
& \qquad \begin{array}{rl}
\frac{y}{} 0 \quad 0(y) \\
1 & 0.064 \\
2 & 0.432 \\
3 & 0.216
\end{array}
\end{aligned}
$$

R Code

> dbinom(0, 3, .6)
[1] 0.064
> dbinom(1, 3, .6)
[1] 0.288
> dbinom($0: 3,3, .6$)
[1] 0.0640 .2880 .4320 .216
$>\operatorname{cbind}(0: 3, \operatorname{dbinom}(0: 3,3, .6))$

	$[, 1]$	$[, 2]$
$[1]$,	0	0.064
$[2]$,	1	0.288
$[3]$,	2	0.432
$[4]$,	3	0.216

$>$ plot ($0: 3$, dbinom $(0: 3,3, .6)$, type $=$ "h",
xlab = "y", ylab = "P(y)")

Facts About the Binomial Distribution

- $E(Y)=n \pi$
- $\sigma^{2}=\operatorname{Var}(Y)=n \pi(1-\pi), \quad \sigma=\sqrt{n \pi(1-\pi)}$

р $\mathrm{p}=\frac{\mathrm{Y}}{\mathrm{n}}=$ proportion of success (also denoted $\hat{\pi}$)

$$
\begin{array}{ll}
E(p)=E\left(\frac{Y}{n}\right)=\pi & \text { (mean of } p \text { is } \pi) \\
\sigma(p)=\sqrt{\frac{\pi(1-\pi)}{n}} & (\text { std error of } p)
\end{array}
$$

- Binomial distribution can be approximated by a normal distribution when n is large $(n \cdot \min \{\pi, 1-\pi\} \geqslant 5)$.

1.3 Statistical Inference for a Proportion

Parameters are often estimated using maximum likelihood (ML).

Definition

The likelihood function is the probability of the observed data, expressed as a function of the parameter value.

Example

Binomial, $n=3$, observe $y=1$. Then

$$
P(1)=\frac{3!}{1!2!} \pi^{1}(1-\pi)^{2}=3 \pi(1-\pi)^{2}=: \ell(\pi)
$$

is the likelihood function, defined for π between 0 and 1 .

$$
\begin{aligned}
& \pi=0.1: \ell(0.1) \\
& \pi=3(.1)(.9)^{2}=0.243 \\
& \pi=0.4: \ell(0.4)=3(.4)(.6)^{2}=0.432 \\
& \pi(0.6)=3(.6)(.4)^{2}=0.288
\end{aligned}
$$

Plot of Binomial Likelihood Function when $n=3, y=1$
$>\operatorname{curve}(d b i n o m(1,3, x), x \lim =c(0,1))$

Definition

The maximum likelihood estimate (MLE) is the parameter value at which the likelihood function is maximized.

Example

$\ell(\pi)=3 \pi(1-\pi)^{2}$ is maximized at $\hat{\pi}=1 / 3=0.333$
l.e., $y=1$ success in $n=3$ trials is more likely for $\pi=1 / 3$ than for any other value of π.

Plot of Binomial Likelihood Function when $n=3, y=1$

Plot of Binomial Likelihood Function when $n=3, y=0$

Naturally, the likelihood function and the MLE depend on the data. If we observe $y=0$ successes in $n=3$ trials, then the MLE is $\hat{\pi}=\frac{0}{3}=0$.

Plot of Binomial Likelihood Function when $n=3, y=2$ If we observe $\mathrm{y}=2$ successes in $\mathrm{n}=3$ trials, then MLE is $\hat{\pi}=\frac{2}{3}=0.667$.

Binomial parameter: π

Plot of Binomial Likelihood Function when $n=3, y=3$

If we observe $y=3$ successes in $n=3$ trials, then MLE is $\hat{\pi}=\frac{3}{3}=1$.

Facts About MLEs

- For binomial, MLE is
$\hat{\pi}=\frac{y}{n}=p=$ sample proportion of successes.
- If $y_{1}, y_{2}, \ldots, y_{n}$ are independent observations from a fixed normal distribution, then the MLE of the underlying mean μ is $\hat{\mu}=\bar{y}$ (sample mean). Same is true for Poisson distribution.
- In ordinary linear regression with Y ~ normal, the least squares estimators of the regression coefficients are also the MLEs.
- For large sample size n , MLEs are optimal (no other estimator has smaller mean squared error: variance plus squared bias). This is true in fairly broad generality.
- For large n, the sampling distribution of the MLE is approximately normal. Again, this is true in fairly broad generality.

ML Inference for a Binomial Success Probability

MLE of π is $\quad \hat{\pi}=\mathrm{p}=\frac{\mathrm{y}}{\mathrm{n}}$.
Recall $E(p)=\pi, \quad \sigma(p)=\sqrt{\frac{\pi(1-\pi)}{n}}$.

- Note that p is unbiased $(E(p)=\pi)$ and that $\sigma(p) \downarrow 0$ as $n \uparrow \infty$. This implies that p is a consistent estimator of π, i.e., $p \rightarrow \pi$ in probability.

MLEs are generally consistent.

- p is a sample mean for 0-1 data, so by the Central Limit Theorem, the sampling distribution of p is approximately normal for large n.

Again, this is generally true for MLEs.

Significance Test for Binomial Parameter

$$
\mathrm{H}_{0}: \pi=\pi_{0} \quad \text { vs } \quad \mathrm{H}_{\mathrm{a}}: \pi \neq \pi_{0} \quad \text { (or 1-sided alternative) }
$$

If H_{0} is true, then the sampling distribution of the test statistic

$$
z=\frac{p-\pi_{0}}{\sigma(p)}=\frac{p-\pi_{0}}{\sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{n}}}
$$

is approximately $\mathrm{N}(0,1)$ for large samples: this is the reference distribution. Note that the null SE of p was used to compute z.

Definition

p-value $=$ probability of results at least as extreme as observed (if null were true)

For the two-sided alternative hypothesis $\left(\pi \neq \pi_{0}\right)$, use the two-tailed probability $\operatorname{Pr}(|Z|>|z|)$.

Confidence Interval for Binomial Parameter

Definition

The Wald Cl for a parameter θ is $\hat{\theta} \pm z_{\alpha / 2}$ SE, where SE is the estimated standard error of $\hat{\theta}$.

For a $95 \% \mathrm{CI}, \alpha=5 \%=.05$ and $z_{\alpha / 2}=z_{.025}=1.96$, so take ± 1.96 standard errors.

Example

$\theta=\pi: \quad$ MLE is $\hat{\theta}=\hat{\pi}=p$
$\sigma(p)=\sqrt{\frac{\pi(1-\pi)}{n}}$ estimated by $S E=\sqrt{\frac{p(1-p)}{n}}$
$95 \% \mathrm{Cl}$ for $\pi: p \pm 1.96 \sqrt{\frac{p(1-p)}{n}}$

Example (in which the Wald interval collapses)

Estimate π, the population proportion of vegetarians.
For $n=20$, suppose we observe $y=0$.

$$
\begin{aligned}
& p=\frac{0}{20}=0 \\
& 95 \% \text { CI: } 0 \pm 1.96 \sqrt{\frac{0 \times 1}{20}}=0 \pm 0=(0,0)
\end{aligned}
$$

Remarks

- Wald intervals can perform poorly in categorical data analysis unless n is quite large.
- Wald Cl for π collapses if $p=0$ or 1 .
- The actual coverage probability of the Wald interval can be much less than 0.95 when π is close to 0 or 1 .
- Wald $95 \% \mathrm{CI}$ is the set of π_{0} values with p-value $>.05$ when testing

$$
\mathrm{H}_{0}: \pi=\pi_{0} \quad \text { vs } \quad \mathrm{H}_{\mathrm{a}}: \pi \neq \pi_{0}
$$

using the test statistic

$$
z=\frac{p-\pi_{0}}{\sqrt{\frac{p(1-p)}{n}}} \quad \text { (denominator is estimated SE) }
$$

Definition

The score test and the score CI use null hypothesis value of the SE.
E.g., score $95 \% \mathrm{Cl}$ is the set of π_{0} values for which p-value $>.05$ when testing

$$
\mathrm{H}_{0}: \pi=\pi_{0} \quad \text { vs } \quad \mathrm{H}_{\mathrm{a}}: \pi \neq \pi_{0}
$$

using the test statistic

$$
z=\frac{p-\pi_{0}}{\sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{n}}} \quad \text { (denom is SE under } H_{0} ; \text { known, not estimated) }
$$

Example

$\pi=$ probability of being vegetarian.

$$
n=20, \quad y=0, \quad p=\frac{0}{20}=0
$$

What values of π_{0} satisfy

$$
\frac{\left|0-\pi_{0}\right|}{\sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{20}}}<1.96 \quad \text { i.e., } \quad\left|0-\pi_{0}\right|<1.96 \sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{20}}
$$

Get equality at $\pi_{0}=0$ and $\pi_{0}=.16$ (solve quadratic equation). Inequality is satisfied for all values of π_{0} between 0 and .16.

So 95% score Cl for π is $(0,16)$. More sensible than Wald CI.

- When solving the quadratic, can show that midpoint of 95% score Cl is

$$
\frac{y+1.96^{2} / 2}{n+1.96^{2}} \approx \frac{y+2}{n+4}
$$

- Can improve Wald CI $p \pm 1.96 \sqrt{\frac{p(1-p)}{n}}$ by adding 2 successes and 2 failures before computing p ("Agresti-Coull" method).
- For inference about proportions, score tests and CIs tend to perform better than Wald, in that the actual error rates are closer to their nominal levels.
- Another good approach uses the likelihood function directly. The CI it is the set of values of π_{0} not rejected by the likelihood ratio test, i.e., the set of values of π for which $\ell(\pi)$ is close to $\ell(\hat{\pi})$.
- For very small n, do inference using the exact binomial sampling distribution of the data, instead of the normal approximation.

R Functions for Simple Binomial Tests and Cls prop. test computes score test and CI .

- Default test is for $\mathrm{H}_{0}: \pi=0.5$ vs $\mathrm{H}_{\mathrm{a}}: \pi \neq 0.5$
- Uses continuity correction by default to improve normal approx.
> prop.test $(0,20)$

$$
\begin{aligned}
& \text { 1-sample proportions test with continuity } \\
& \text { correction }
\end{aligned}
$$

```
data: 0 out of 20, null probability 0.5
X-squared = 18.05, df = 1, p-value = 2.152e-05
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
    0.00000 0.20045
sample estimates:
p
0
```

prop. test without continuity correction.
> prop.test(0, 20, correct=FALSE)
1-sample proportions test without continuity correction
data: 0 out of 20 , null probability 0.5
X-squared = 20, df = 1, p-value $=7.744 \mathrm{e}-06$
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.000000 .16113
sample estimates:
p
0
binom.test does exact test and corresponding exact CI.

- Default test is for $\mathrm{H}_{0}: \pi=0.5$ vs $\mathrm{H}_{\mathrm{a}}: \pi \neq 0.5$
> binom.test $(0,20)$
Exact binomial test
data: 0 and 20
number of successes $=0$, number of trials $=20$,
p-value = 1.907e-06
alternative hypothesis: true probability of success is not ec 95 percent confidence interval:
0.000000 .16843
sample estimates:
probability of success

2. Contingency Tables

Two-Way Contingency Tables
Contingency table: cells contain counts of outcomes.
A two-way table with I rows and J columns is called an I $\times \mathrm{J}$ table.
Physicians' Health Study (5 years)
Myocardial Infarction $(\mathrm{MI})=$ heart attack. 2×2 table.

Group	MI	
	Y	N
Placebo	189	10845
Aspirin	104	10933

With row totals:

Group	MI		
	Y	N	Total
Placebo	189	10845	11034
Aspirin	104	10933	11037

Conditional Distributions

A conditional distribution of Y given X refers to the probability distribution of Y when we restrict attention to a fixed level of X.
Physicians' Health Study (ctd)

Group	MI		
	Y	N	Total
Placebo	0.017	0.983	1
Aspirin	0.009	0.991	1

Sample (or estimated) conditional probs for placebo group are

$$
\frac{189}{11,034}=.017, \quad \frac{10,845}{11,034}=.983
$$

Natural way to look at data when
$\mathrm{Y}=$ response variable (e.g., heart attack: yes/no)
$X=$ explanatory variable (e.g., group: aspirin/placebo)

Diagnostic Disease Tests

$\mathrm{Y}=$ outcome of test:
$1=$ positive
$1=$ diseased
$2=$ negative
$X=$ actual condition:
2 = not diseased

sensitivity $=\operatorname{Pr}(Y=1 \mid X=1)$
specificity $=\operatorname{Pr}(Y=2 \mid X=2)$

If you get a positive result, more relevant to you is $\operatorname{Pr}(\mathrm{X}=1 \mid \mathrm{Y}=1)$. If disease is relatively rare, this may be low even if sensitivity and specificity are high (see pp. 23-24 of text for an example).

Joint and Marginal Distributions

What if X and Y are both response variables? Let

$$
\begin{aligned}
& \pi_{i j}=\operatorname{Pr}(X=i, Y=j), \quad i=1, \ldots, I, \quad j=1, \ldots, J \\
& \pi_{i+}=\operatorname{Pr}(X=i)=\sum_{j} \pi_{i j}=\pi_{i 1}+\cdots+\pi_{i j} \\
& \pi_{+j}=\operatorname{Pr}(Y=j)=\sum_{i} \pi_{i j}=\pi_{1 j}+\cdots+\pi_{I j}
\end{aligned}
$$

$\left\{\pi_{i j}\right\}$ forms the joint distribution of X and Y .
$\left\{\pi_{i+}\right\}$ forms the marginal distribution of X.
$\left\{\pi_{+j}\right\}$ forms the marginal distribution of Y.
2×2 example:

Sample cell counts: $\left\{n_{i j}\right\}$
Cell proportions: $\left\{p_{i j}\right\}$

$$
p_{i j}=\frac{n_{i j}}{n} \quad \text { where } n=\sum_{i} \sum_{j} n_{i j}
$$

2×2 example:

Independence

Definition (Statistical Independence)

X and Y are statistically independent if the true conditional distribution of Y is the same at each level of X.
2×2 example. Rows represent conditional distributions of Y given X.

Fact: X and Y are independent if and only if

$$
\operatorname{Pr}(X=i, Y=j)=\operatorname{Pr}(X=i) \cdot \operatorname{Pr}(Y=j) \quad \text { for all } i \text { and } j,
$$

i.e., $\pi_{i j}=\pi_{i+} \pi_{+j}$ for all i and j.
2×2 example:

2.2 Comparing Proportions in 2×2 Tables

Conditional distributions:

$$
\hat{\pi}_{1}-\hat{\pi}_{2}=p_{1}-p_{2} \quad \operatorname{SE}\left(p_{1}-p_{2}\right)=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}
$$

Physicians' Health Study (ctd)

$$
\begin{aligned}
& p_{1}=0.017 \quad p_{2}=0.009 \quad p_{1}-p_{2}=0.008 \\
& S E=\sqrt{\frac{0.017 \times 0.983}{11034}+\frac{0.009 \times 0.991}{11037}}=0.0015
\end{aligned}
$$

$95 \% \mathrm{Cl}$ for $\pi_{1}-\pi_{2}: .008 \pm 1.96(.0015)=.008 \pm .003=(.005, .011)$
Apparently $\pi_{1}-\pi_{2}>0$ (i.e., $\pi_{1}>\pi_{2}$).

Relative Risk

relative risk $=\frac{\pi_{1}}{\pi_{2}}$

Physicians' Health Study (ctd)

Sample relative risk in the Physicians Health Study is

$$
\frac{p_{1}}{p_{2}}=\frac{0.017}{0.009}=1.82
$$

Sample proportion of heart attacks was 82% higher for placebo group.

- See p. 58 of text for Cl formula for relative risk.

Example: 95\% CI for RR in PHS is (1.43, 2.31).

- Independence $\Longleftrightarrow \frac{\pi_{1}}{\pi_{2}}=1$

2.3 The Odds Ratio

The odds of response S (instead of F) is $\frac{\operatorname{Pr}(\mathrm{S})}{\operatorname{Pr}(\mathrm{F})}$.
In the 2×2 table above: $\quad \operatorname{odds}(S)= \begin{cases}\frac{\pi_{1}}{1-\pi_{1}} & \text { in row } 1 \\ \frac{\pi_{2}-\pi_{2}}{1-2} & \text { in row } 2\end{cases}$
Note

- if odds $(S)=3$, then S is three times as likely as F;
- if odds $(S)=\frac{1}{3}$, then F is three times as likely as S.

$$
\operatorname{Pr}(S)=\frac{\operatorname{odds}(S)}{1+\operatorname{odds}(S)}
$$

odds $(\mathrm{S})=3 \Longrightarrow \operatorname{Pr}(\mathrm{~S})=\frac{3}{1+3}=\frac{3}{4} \quad \operatorname{Pr}(\mathrm{~F})=\frac{1}{4}$
$\operatorname{odds}(S)=\frac{1}{3} \Longrightarrow \operatorname{Pr}(S)=\frac{1 / 3}{1+1 / 3}=\frac{1 / 3}{4 / 3}=\frac{1}{4} \quad \operatorname{Pr}(F)=\frac{3}{4}$

Definition (Odds Ratio)

Odds Ratio: $\quad \theta=\frac{\pi_{1} /\left(1-\pi_{1}\right)}{\pi_{2} /\left(1-\pi_{2}\right)}=\frac{\pi_{1}\left(1-\pi_{2}\right)}{\pi_{2}\left(1-\pi_{1}\right)}$

Physicians Health Study (ctd)

Group	MI		
	Y	N	Total
Placebo	189	10845	11034
Aspirin	104	10933	11037

Sample proportions:

p_{1}	$1-p_{1}$			
p_{2}	$1-p_{2}$	$=$	0.0171	0.9829
:---	:---			
0.0094	0.9906			

sample odds $=\left\{\begin{array}{l}\frac{0.0171}{0.9829}=\frac{189}{10845}=0.0174 \text { placebo } \\ \frac{0.0094}{0.9906}=\frac{104}{10933}=0.0095 \text { aspirin }\end{array}\right.$
sample odds ratio $=\hat{\theta}=\frac{0.0174}{0.0095}=1.83$
Estimate odds of heart attack in placebo group to be 1.83 times odds in aspirin group.

Properties of the Odds Ratio

- For counts

S	F
n_{11}	n_{12}
n_{21}	n_{22}

$$
\hat{\theta}=\frac{n_{11} / n_{12}}{n_{21} / n_{22}}=\frac{n_{11} n_{22}}{n_{12} n_{21}}=\text { cross-product ratio }
$$

- Treats X, Y symmetrically:

MI	Group	
	Placebo	Aspirin
Y	189	104
N	10845	10933

- Each odds $\geqslant 0$ and $\theta \geqslant 0$.
$\nabla \theta=1$ when $\pi_{1}=\pi_{2}$; i.e., when response independent of group.
- The further θ is from 1, the stronger the association.
(For $Y=$ lung cancer, some studies have $\theta \approx 10$ for $X=$ smoking, $\theta \approx 2$ for $X=$ passive smoking.)
- If rows are interchanged (or if columns are interchanged), $\theta \mapsto 1 / \theta$.

For example, a value of $\theta=1 / 5$ indicates the same strength of association as $\theta=5$, but in the opposite direction.
$\triangleright \theta=1 \Longleftrightarrow \log \theta=0$
The \log odds ratio $(\log \theta)$ is symmetric about 0, e.g.,

$$
\begin{aligned}
& \theta=2 \Longleftrightarrow \log \theta=0.7 \\
& \theta=\frac{1}{2} \Longleftrightarrow \log \theta=-0.7
\end{aligned}
$$

- Sampling distribution of $\hat{\theta}$ is skewed to the right. Normal approximation is good only if n is very large.
- Sampling distribution of $\log \hat{\theta}$ is closer to normal, so construct CI for $\log \theta$ and then exponentiate endpoints to get Cl for θ.

Note: We use "natural logs" (with base $e=2.718 \ldots$.
LN on most calculators.

A Confidence Interval for the Odds Ratio

Large-sample (asymptotic) SE of $\log \hat{\theta}$ is

$$
S E(\log \hat{\theta})=\sqrt{\frac{1}{n_{11}}+\frac{1}{n_{12}}+\frac{1}{n_{21}}+\frac{1}{n_{22}}}
$$

CI for $\log \theta: \quad(\mathrm{L}, \mathrm{U})=\log \hat{\theta} \pm z_{\alpha / 2} \times \mathrm{SE}(\log \hat{\theta})$
Cl for $\theta: \quad\left(e^{\mathrm{L}}, e^{\mathrm{U}}\right)$.

Physicians Health Study (ctd)

$$
\begin{aligned}
& \hat{\theta}=\frac{189 \times 10933}{104 \times 10845}=1.83 \\
& \log \hat{\theta}=\log (1.83)=0.605
\end{aligned}
$$

$$
\operatorname{SE}(\hat{\theta})=\sqrt{\frac{1}{189}+\frac{1}{10845}+\frac{1}{104}+\frac{1}{10933}}=0.123
$$

$$
95 \% \mathrm{Cl} \text { for } \log \theta: \quad 0.605 \pm 1.96(0.123)=(0.365,0.846)
$$

$95 \% \mathrm{CI}$ for $\theta: \quad\left(e^{0.365}, e^{0.846}\right)=(1.44,2.33)$
Apparently $\theta>1$.

Remarks

- $\hat{\theta}$ not midpoint of Cl because of skewness
- Better estimate if we use $\left\{n_{i j}+0.5\right\}$. Especially if any $n_{i j}=0$.
- When π_{1} and π_{2} close to zero,

$$
\theta=\frac{\pi_{1} /\left(1-\pi_{1}\right)}{\pi_{2} /\left(1-\pi_{2}\right)} \approx \frac{\pi_{1}}{\pi_{2}}=\text { relative risk }
$$

Review: Exponential and Natural Logarithm Functions

$$
\begin{aligned}
& \exp x=e^{x} \quad \text { (exponential function) } \\
& e^{0}=1 \quad e^{1}=2.718 \ldots \quad e^{-1}=\frac{1}{e}=0.368 \\
& e^{x}>0 \text { for all } x
\end{aligned}
$$

Exponential function is the antilog for the natural logarithm $\mathrm{In}=\log _{\mathrm{e}}$

$$
\begin{aligned}
& e^{x}=y \Longleftrightarrow \log _{e}(y)=x \\
& e^{0}=1 \text { means } \log _{e}(1)=0 \\
& e^{1}=2.718 \text { means } \log _{e}(2.718)=1 \\
& e^{-1}=0.368 \text { means } \log _{e}(0.368)=-1 \\
& \log _{e}(2)=0.693 \text { means } e^{0.693}=2
\end{aligned}
$$

Case-control study in London Hospitals (Doll and Hill, 1950)

$X=$ smoked $\geqslant 1$ cigarette per day for at least 1 year
$\mathrm{Y}=$ lung cancer

Smoked	Cancer	
	Yes	No
Yes	688	650
No	21	59
Total	709	709

Case-control studies are "retrospective." Binomial sampling model applies to X (sampled within levels of Y), not to Y .

Cannot estimate $\operatorname{Pr}(\mathrm{Y}=$ yes $\mid \mathrm{X})$. Cannot estimate

$$
\pi_{1}-\pi_{2}=\operatorname{Pr}(Y=\text { yes } \mid X=\text { yes })-\operatorname{Pr}(Y=\text { yes } \mid X=\text { no }) .
$$

Cannot estimate π_{1} / π_{2}.

Case-control study in London Hospitals (Doll and Hill, 1950) (ctd)

However, we can estimate $\operatorname{Pr}(X \mid Y)$ so we can estimate θ (recall that θ treats rows and columns symmetrically).

$$
\begin{aligned}
\hat{\theta} & =\frac{\widehat{\operatorname{Pr}}(\mathrm{X}=\text { yes } \mid \mathrm{Y}=\text { yes }) / \widehat{\operatorname{Pr}}(\mathrm{X}=\mathrm{no} \mid \mathrm{Y}=\text { yes })}{\widehat{\operatorname{Pr}}(\mathrm{X}=\text { yes } \mid \mathrm{Y}=\mathrm{no}) / \widehat{\operatorname{Pr}}(\mathrm{X}=\mathrm{no} \mid \mathrm{Y}=\mathrm{no})} \\
& =\frac{(688 / 709) /(21 / 709)}{(650 / 709) /(59 / 709)}=\frac{688 \times 59}{21 \times 650}=2.97
\end{aligned}
$$

Odds of lung cancer for smokers estimated to be about 3 times the odds for non-smokers.

If $\operatorname{Pr}(\mathrm{Y}=$ yes $\mid \mathrm{X})$ is near 0 (lung cancer rare in both groups), then $\theta \approx \pi_{1} / \pi_{2}=$ relative risk, and can conclude that probability of lung cancer is ≈ 3 times as high for smokers as for non-smokers.

2.4 Testing Independence

Job Satisfaction and Income

Data from General Social Survey (1991)

Income	Job Satisfaction				
	Dissat	Little	Moderate	Very	Total
$<5 \mathrm{~K}$	2	4	13	3	22
$5 \mathrm{~K}-15 \mathrm{~K}$	2	6	22	4	34
$15 \mathrm{~K}-25 \mathrm{~K}$	0	1	15	8	24
$>25 \mathrm{~K}$	0	3	13	8	24
Total	4	14	63	23	104

$H_{0}: X$ and Y independent vs $H_{a}: X$ and Y dependent
H_{0} means that for all (i, j)

$$
\begin{aligned}
\operatorname{Pr}(X=i, Y=j) & =\operatorname{Pr}(X=i) \operatorname{Pr}(Y=j) \\
\pi_{i j} & =\pi_{i+} \pi_{+j}
\end{aligned}
$$

Expected frequency is
$\mu_{i j}=$ mean of dist. of cell count $n_{i j}$

$$
\begin{aligned}
& =n \pi_{i j} \\
& =n \pi_{i+} \pi_{+j} \quad \text { under } H_{0}
\end{aligned}
$$

MLEs under H_{0} are

$$
\begin{aligned}
\hat{\mu}_{i j} & =n \hat{\pi}_{i+} \hat{\pi}_{+j} \\
& =n\left(\frac{n_{i+}}{n}\right)\left(\frac{n_{+j}}{n}\right)=\frac{n_{i+} n_{+j}}{n}
\end{aligned}
$$

$\hat{\mu}_{i j}$ are called estimated expected frequencies.

Chi-Squared Test of Independence

Usual test statistic is Pearson's chi-squared statistic:

$$
X^{2}=\sum_{i j} \frac{\left(n_{i j}-\hat{\mu}_{i j}\right)^{2}}{\hat{\mu}_{i j}}=\sum_{\text {all cells }} \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

X^{2} has a large-sample chi-squared dist. under H_{0}, with

$$
d f=(I-1)(J-1)
$$

where $\mathrm{I}=$ number of rows, $\mathrm{J}=$ number of columns.

$$
\mathrm{p} \text {-value }=\operatorname{Pr}\left(X^{2} \geqslant X_{o b s}^{2}\right)=\text { right-tail prob }
$$

(Table given on p. 343 of text.)
Note: chi-squared dist. has $\mu=\mathrm{df}, \sigma=\sqrt{2 \times \mathrm{df}}$ and becomes more bell-shaped as df increases.

Job Satisfaction and Income (ctd)

$$
\begin{aligned}
& X^{2}=11.5 \\
& d f=(I-1)(J-1)=3 \times 3=9 \\
& p \text {-value }=\operatorname{Pr}\left(X^{2} \geqslant 11.5\right)=0.2415
\end{aligned}
$$

The evidence against H_{0} is weak: it is plausible that job satisfaction and income are independent.

Likelihood-Ratio Test of Independence

Test statistic

$$
\begin{aligned}
\mathrm{G}^{2} & =-2 \log \left(\frac{\text { maximized likelihood when } H_{0} \text { true }}{\text { maximized likelihood generally }}\right) \\
& =2 \sum_{i j} n_{i j} \log \left(\frac{n_{i j}}{\hat{\mu}_{i j}}\right)
\end{aligned}
$$

Dist. of G^{2} under H_{0} is also approx. chi-squared df $=(\mathrm{I}-1)(\mathrm{J}-1)$.
Job Satisfaction and Income (ctd)

$$
\begin{aligned}
& \mathrm{G}^{2}=13.47 \\
& \mathrm{df}=9 \\
& \mathrm{p} \text {-value }=0.1426
\end{aligned}
$$

Degrees of Freedom for Chi-Squared Test

df for X^{2} test $=$ \# parameters in general $-\#$ parameters under H_{0}

Example (Degrees of Freedom for Chi-Squared Test of Indep)

Independence: $\mathrm{H}_{0}: \pi_{i j}=\pi_{i+} \pi_{+\mathrm{j}}$

$$
\sum_{i j} \pi_{i j}=1 \quad \sum_{i} \pi_{i+}=1 \quad \sum_{j} \pi_{+j}=1
$$

- In general there are IJ - 1 free parameters: If we know IJ - 1 of the $\pi_{i j}$, then we know the last one because they must add to 1 .
- Under H_{0}, there are $(\mathrm{I}-1)+(\mathrm{J}-1)$ free parameters: $(\mathrm{I}-1)$ free π_{i+} and $(\mathrm{J}-1)$ free π_{+j}. These determine the $\pi_{i j}$ under H_{0}.
Thus

$$
\begin{aligned}
\mathrm{df} & =(\mathrm{IJ}-1)-[(\mathrm{I}-1)+(\mathrm{J}-1)] \\
& =(\mathrm{I}-1)(\mathrm{J}-1)
\end{aligned}
$$

Remarks

- If all $n_{i j}=\hat{\mu}_{i j}$, then $X^{2}=G^{2}=0$.
- As $\mathrm{n} \uparrow, \mathrm{X}^{2} \xrightarrow{\mathrm{~d}} \chi^{2}$ faster than $\mathrm{G}^{2} \xrightarrow{\mathrm{~d}} \chi^{2}$, but X^{2} and G^{2} are usually similar if most $\hat{\mu}_{i j} \geqslant 5$.
- These tests treat X and Y as nominal: reordering rows or columns leaves X^{2}, G^{2} unchanged.

Sec. 2.5 (we skip) presents ordinal tests. We re-analyze the job sat data with an ordinal model in Ch. 6 (more powerful test, much smaller p-value).

Residuals

Definition (Standardized (or Adjusted) Residuals)

$$
r_{i j}=\frac{n_{i j}-\hat{\mu}_{i j}}{\sqrt{\hat{\mu}_{i j}\left(1-p_{i+}\right)\left(1-p_{+j}\right)}}
$$

Under H_{0} : independence, $\mathrm{r}_{\mathrm{ij}} \approx \operatorname{std}$ normal $\mathrm{N}(0,1)$. Job Satisfaction and Income (ctd)

$$
\begin{aligned}
& n_{44}=8 \quad \hat{\mu}_{44}=\frac{24 \times 23}{104}=5.31 \\
& r_{44}=\frac{8-5.31}{\sqrt{5.31\left(1-\frac{24}{104}\right)\left(1-\frac{23}{104}\right)}}=1.51
\end{aligned}
$$

None of the cells show very strong evidence of association.

Standardized Residuals for Job Satisfaction Data

Income	Dissat	Little	Moderate	Very
$<5 \mathrm{~K}$	1.44	0.73	-0.16	-1.08
$5 \mathrm{~K}-15 \mathrm{~K}$	0.75	0.87	0.60	-1.77
$15 \mathrm{~K}-25 \mathrm{~K}$	-1.12	-1.52	0.22	1.51
$>25 \mathrm{~K}$	-1.12	-0.16	-0.73	1.51

Getting Tabled Data into R

There are many ways to enter contingency table data into R. With a simple two-way table, perhaps the easiest is to enter the data as matrix of counts. We will illustrate with Example 2.44 from the text concerning Party Affiliation by Gender (pag). Note that by default a matrix is read by columns. The as.table() function lets R know that the matrix represents a contigency table of counts.

```
> pag.tab <- matrix(c(762, 484, 327, 239, 468, 477), nrow=2)
> dimnames(pag.tab) <-
    list(Gender=c("Female", "Male"),
    Party=c("Democrat","Independent","Republican"))
> pag.tab <- as.table(pag.tab)
> pag.tab
```


Party

Gender	Democrat	Independent	Republican
Female	762	327	468
Male	484	239	477

Once the data are saved as a table as above, we can easily convert them to an data frame, an R data structure with a column for each variable and a row for each observation.

```
> pag.df <- as.data.frame(pag.tab)
```

> pag.df

	Gender	Party	Freq
1	Female	Democrat	762
2	Male	Democrat	484
3	Female	Independent	327
4	Male	Independent	239
5	Female	Republican	468
6	Male	Republican	477

Alternatively, we could create the data frame first, with a row for each combination of factor levels. Here the expand. grid function can save us some work.
> pag.df <-
expand.grid(Gender=c("Female", "Male"),
Party=c ("Democrat", "Independent", "Republican")
> pag.df

Having created the data frame, we can generate the table using the xtabs function.
> pag.df

	Gender	Party Freq
1	Female	Democrat
2	762	
2	Male	Democrat
3	484	
Female	Independent	327
4	Male	Independent
5	239	
5	Female	Republican
6	Male	Republican

Party			
Gender	Democrat	Independent	Republican
Female	762	327	468
Male	484	239	477

The data could also be read from the columns of text file or a comma-separated (csv) file. The csv format provides an easy way to move data from a spreadsheet program into R or vice versa. The text or csv file should have a separate row for each combination of factor levels.

Thus a text file Data/pag.txt containing can be read into an R dataframe via
> pag.df <- read.table("Data/pag.txt", header=TRUE)

Similarly, a csv file Data/pag. csv containing can be read into an R dataframe via
> pag.df <- read.csv("Data/pag.csv")

See the R help for read. table and read. csv for more information.

Computations on Tables

Marginal Totals
> pag.tab

Party			
Gender	Democrat	Independent	Republican
Female	762	327	468
Male	484	239	477
> margin.table(pag.tab, 1)			
Gender			
Female Male			
15571200			
> margin.table(pag.tab, 2)			
Party			
Democrat Independent Republican			
	246	566	945

> addmargins (pag.tab)
Party
Gender Democrat Independent Republican Sum

Female	762	327	468	1557
Male	484	239	477	1200
Sum	1246	566	945	2757

Computations on Tables

Sample Proportions

Overall proportions $\left\{p_{i j}\right\}$:
> prop.table(pag.tab)

Party			
Gender	Democrat	Independent	Republican
Female	0.276387	0.118607	0.169750
Male	0.175553	0.086688	0.173014

> round(prop.table(pag.tab), 3)
Party
Gender Democrat Independent Republican

Female	0.276	0.119	0.170
Male	0.176	0.087	0.173

Computations on Tables

Sample Proportions

Row proportions:
> prop.table(pag.tab, 1)

Party

Gender Democrat Independent Republican

Female	0.48940	0.21002	0.30058
Male	0.40333	0.19917	0.39750

Column proportions:
> prop.table(pag.tab, 2)

Party			
Gender	Democrat	Independent	Republican
Female	0.61156	0.57774	0.49524
Male	0.38844	0.42226	0.50476

Computations on Tables
 Chi-Square Test for Independence

> chisq.test(pag.tab)
Pearson's Chi-squared test
data: pag.tab
X-squared $=30.07, \mathrm{df}=2, \mathrm{p}$-value $=2.954 \mathrm{e}-07$
> pag.chisq <- chisq.test(pag.tab)
> names(pag.chisq)

[1] "statistic" "parameter" "p.value" "method"
 [5] "data.name" "observed" "expected" "residuals"
 [9] "stdres"

> pag.chisq\$statistic
X-squared 30.07
> pag.chisq\$parameter
df
2
> pag.chisq\$p.value
[1] 2.9536e-07
> pag.chisq\$observed

Party			
Gender	Democrat	Independent	Republican
Female	762	327	468
Male	484	239	477

> pag.chisq\$expected

Party			
Gender	Democrat	Independent	Republican
Female	703.67	319.65	533.68
Male	542.33	246.35	411.32

> with(pag.chisq, sum((observed - expected)^2/expected))
[1] 30.07

Unadjusted (or raw) Pearson residuals:
> pag.chisq\$residuals

Party			
Gender	Democrat	Independent	Republican
Female	2.19886	0.41137	-2.84324
Male	-2.50467	-0.46858	3.23867

Standardized (or adjusted) Pearson residuals:
> pag.chisq\$stdres

Party			
Gender	Democrat	Independent	Republican
Female	4.50205	0.69945	-5.31595
Male	-4.50205	-0.69945	5.31595

Partitioning Chi-squared

The sum of two independent chi-squared random variables has a chi-squared distribution with df equal to the sum of the df of the two components. Symbolically:
$\chi_{a}^{2}, \chi_{b}^{2}$ independent $\Longrightarrow \chi_{a}^{2}+\chi_{b}^{2} \sim \chi_{a+b}^{2}$

- G^{2} statistic for testing independence can be partitioned into components representing certain aspects of the association.
- Partition of X^{2} is only approximate.
- Text discusses how to partition so that separate components are independent. This is required for G^{2} to partition exactly.

Job Satisfaction and Income (ctd)

Income	Job Satisfaction			
	Dissat	Little	Moderate	Very
$<5 \mathrm{~K}$	2	4	13	3
$5 \mathrm{~K}-15 \mathrm{~K}$	2	6	22	4
$15 \mathrm{~K}-25 \mathrm{~K}$	0	1	15	8
$>25 \mathrm{~K}$	0	3	13	8

Recall $\quad X^{2}=11.52, \quad G^{2}=13.47, \quad d f=9$.

Income	Job Satisfaction			
	Dissat	Little	Moderate	Very
$<5 \mathrm{~K}$	0.091	0.182	0.591	0.136
$5 \mathrm{~K}-15 \mathrm{~K}$	0.059	0.176	0.647	0.118
$15 \mathrm{~K}-25 \mathrm{~K}$	0.000	0.042	0.625	0.333
$>25 \mathrm{~K}$	0.000	0.125	0.542	0.333

Job Satisfaction and Income (ctd)

Income	JobSat				χ^{2}	G^{2}	df
	VD	LS	MS	VS			
Low							
<5	2	4	13	3	0.30	0.30	3
5-15	2	6	22	4			
High							
15-25	0	1	15	8	1.14	1.19	3
>25	0	3	13	8			
Low vs High							
<15	4	10	35	7	10.32	11.98	3
>15	0	4	28	16			
Sum							
					11.76	13.47	9

- Job satis. appears to depend on whether income $>$ or $<\$ 15 \mathrm{~K}$.
$>$ For X^{2}, note $0.30+1.14+10.32=11.76 \neq 11.52$.

Exact Inference for Small Samples

2×2 Case: Fisher's Exact Test

$\mathrm{H}_{0}: X, Y$ independent.

Treating the row and column totals as fixed, the exact null distribution of $\left\{n_{i j}\right\}$ is the hypergeometric distribution:

$$
P\left(n_{11}\right)=\frac{\binom{n_{1+}}{n_{11}}\binom{n_{2+}}{n_{+1}-n_{11}}}{\binom{n}{n_{+1}}}, \text { where }\binom{a}{b}=\frac{a!}{b!(a-b)!}
$$

Lady Tasting Tea (Fisher)

The lady is told that milk was poured first in 4 cups and tea first in the other 4. Order of tasting is randomized. Asked to identify the 4 cups with milk poured first.

Guess

Under $\mathrm{H}_{0},$| 4 | 0 |
| :--- | :--- |
| 0 | 4 | has probability

$$
P(4)=\frac{\binom{4}{4}\binom{4}{4-4}}{\binom{8}{4}}=\frac{\frac{4!}{4!0!} \times \frac{4!}{0!4!}}{\frac{8!}{4!4!}}=\frac{4!4!}{8!}=\frac{1}{70}=0.014
$$

Lady Tasting Tea (ctd)

Under $\mathrm{H}_{0},$| 3 | 1 |
| :--- | :--- |
| 1 | 3 | has probability

$$
P(3)=\frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}}=\frac{16}{70}=0.229
$$

$>$ cbind($0: 4$, dhyper $(0: 4,4,4,4)$)

n_{11}	$\mathrm{P}\left(n_{11}\right)$
0	0.014
1	0.229
2	0.514
3	0.229
4	0.014

For 2×2 tables,

$$
\mathrm{H}_{0}: \text { indep } \Longleftrightarrow \mathrm{H}_{0}: \theta=1 \quad(\theta=\text { odds ratio })
$$

To test $H_{0}: \theta=1$ vs $H_{a}: \theta>1$

$$
\text { p-value }=\operatorname{Pr}\left(\hat{\theta} \geqslant \hat{\theta}_{\text {obs }}\right)=\operatorname{Pr}\left(n_{11} \geqslant n_{11}^{\text {obs }}\right)
$$

Lady Tasting Tea (ctd)

Lady guesses correctly on 3 of the milk-first cups and 3 of the tea-first:

Guess				
Milk	Tea			
Poured First	Milk	3	1	4
	Tea	1	3	4
		4	4	8

$$
p \text {-value }=\operatorname{Pr}\left(n_{11} \geqslant 3\right)=P(3)+P(4)=0.229+0.014=0.243
$$

Very little evidence against H_{0}.
> TeaTasting <-

$$
\begin{aligned}
& \operatorname{matrix}(c(3,1,1,3), \\
& \text { nrow }=2, \\
& \text { dimnames }=\text { list }(\text { Truth }=c(\text { "Milk", "Tea" }), \\
& \text { Guess }=c(\text { "Milk", "Tea"))) }
\end{aligned}
$$

> TeaTasting <- as.table(TeaTasting)
> fisher.test(TeaTasting, alternative = "greater")
Fisher's Exact Test for Count Data
data: TeaTasting
p-value = 0.2429
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
0.31357 Inf
sample estimates:
odds ratio
6.4083

To test $H_{0}: \theta=1 \quad$ vs $H_{a}: \theta \neq 1$
p-value $=$ two-tail prob. of outcomes no more likely than that observed

In the lady tasting tea example, the p-value for the two-tailed test is

$$
\text { p-value }=P(0)+P(1)+P(3)+P(4)=0.486
$$

> fisher.test(TeaTasting, alternative = "two.sided")
Fisher's Exact Test for Count Data
data: TeaTasting
p-value = 0.4857
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.21173621 .93375
sample estimates:
odds ratio
6.4083

Remarks

- If formal test (e.g., reject H_{0} if p-value $\leqslant \alpha=.05$), then actual $\operatorname{Pr}($ type I error) $<\alpha$ because of discreteness (see text).
- Margins may be fixed by design, but test valid even if not.
- Fisher's exact test extends to $\mathrm{I} \times \mathrm{J}$ tables.
> sattab

Job Satisfaction				
Income	Dissat	Little	Moderate	Very
<5K	2	4	13	3
$5 \mathrm{~K}--15 \mathrm{~K}$	2	6	22	4
$15 \mathrm{~K}--25 \mathrm{~K}$	0	1	15	8
$>25 \mathrm{~K}$	0	3	13	8
$>$ fisher.test (sattab)				

Fisher's Exact Test for Count Data

data: sattab
p-value $=0.2315$
alternative hypothesis: two.sided
> data(deathpenalty)
> deathpenalty

DeathPenalty				Defendant
1	Yes	White	White	53
2	No	White	White	414
3	Yes	Black	White	11
4	No	Black	White	37
5	Yes	White	Black	0
6	No	White	Black	16
7	Yes	Black	Black	4
8	No	Black	Black	139

> deathpenalty <-
transform(deathpenalty,
DeathPenalty = relevel(DeathPenalty, "Yes"),
Defendant = relevel(Defendant, "White"),
Victim = relevel(Victim, "White"))

FL Death Penalty Cases (ctd)

> dp <- xtabs(Freq ~ Victim + Defendant + DeathPenalty, data=deathpenalty)
> dp
, , DeathPenalty = Yes

Defendant		
Victim	White	Black
White	53	11
Black	0	4

, , DeathPenalty = No
Defendant
Victim White Black
White 41437
Black 16139

FL Death Penalty Cases (ctd)

> dpflat <- ftable(DeathPenalty ~ Victim + Defendant, data=dp)
> dpflat
DeathPenalty Yes No
Victim Defendant

White	White	53
	414	
Black	White	11
37		
	Black	0
	16	
		4
	139	

FL Death Penalty Cases (ctd)

$\mathrm{Y}=$ death penalty (response var.)
$X=$ defendant's race (explanatory)
$\mathrm{Z}=$ victim's race (control var.)
> round(100*prop.table(dpflat,1), 1)
DeathPenalty Yes No

Victim Defendant

White	White	11.3	88.7
	Black	22.9	77.1
Black	White	0.0	100.0
	Black	2.8	97.2

The tables

Def	DeathPen	
	Yes	No
	and	

are called partial tables. They control for Z (hold it constant).
The (estimated) conditional odds ratios are:

$$
\begin{aligned}
& Z=\text { white }: \quad \hat{\theta}_{X Y(1)}=\frac{53 \times 37}{414 \times 11}=0.43 \quad \text { (} 0.42 \text { after add } .5 \text { to all cells) } \\
& Z=\text { black }: \quad \hat{\theta}_{X Y(2)}=\frac{0 \times 139}{16 \times 4}=0 \quad(0.94 \text { after add } .5 \text { to all cells })
\end{aligned}
$$

Controlling for victim's race, odds of receiving death penalty were lower for white defendants than for black defendants.

Adding the partial tables gives XY marginal table.

Def	DeathPen	
	Yes	No
White	53	430
Black	15	176

$$
\hat{\theta}_{X Y}=1.45
$$

Ignoring victim's race, odds of death penalty higher for white defendants.

Definition (Simpson's Paradox)
All partial tables show reverse association from that in marginal table.

- Cause?
- Moral: can be dangerous to "collapse" contingency tables.

Definition (Conditional Independence)

X and Y are conditionally independent given Z if they are independent in each partial table.

In a $2 \times 2 \times \mathrm{K}$ table this means

$$
\theta_{X Y(1)}=\cdots=\theta_{X Y(K)}=1.0
$$

Remark

Conditional independence does not imply that X and Y are independent in the marginal two-way table.

Example:

	Response			
Clinic	Treatment	Y		
Z	X	S	F	$\hat{\theta}$
1	A	18	12	1.0
	B	12	8	
2	A	2	8	1.0
	B	8	32	
Marginal	A	20	20	2.0
	B	20	40	

Chapter 3: Generalized Linear Models

3.1 Components of a GLM

1. Random Component

Identify response variable Y.
Assume independent observations y_{1}, \ldots, y_{n} from particular family of distributions, e.g., Poisson or binomial.
2. Systematic Component

Model how $\mu=E(Y)$ depends on explanatory variables x_{1}, \ldots, x_{k}.

- Linear predictor: $\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}$.
- Link function: Assume that $\mu=\mathrm{E}(\mathrm{Y})$ satisfies

$$
g(\mu)=\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} \chi_{k}
$$

g is the link function.

Examples

$\vee \log (\mu)=\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}$ uses $g(\mu)=\log (\mu)$.
The log link is often used for a "count" response for which $\mu>0$.
$\triangleright \log \left(\frac{\mu}{1-\mu}\right)=\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}$
uses $g(\mu)=\log \left(\frac{\mu}{1-\mu}\right)$, the logit link. logit $=\log$ (odds).
Often used for binomial, with $\mu=\pi$ between 0 and 1 .
$>\mu=\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}$ uses $g(\mu)=\mu$, the identity link, e.g., ordinary regression for a normal response.

Remarks

- A GLM generalizes ordinary regression by
- permitting Y to have a nonnormal dist.
- permitting modeling of $g(\mu)$ rather than μ.
- The same ML (maximum likelihood) fitting procedure applies to all GLMs. It is the basis of the glm() function in R and of proc genmod in SAS.

3.2 GLMs for Binary Data

Suppose $\mathrm{Y}=1$ or 0 ("Bernoulli" or "binary" random variable).

$$
\text { Let } \quad P(Y=1)=\pi \quad P(Y=0)=1-\pi .
$$

This is binomial for $n=1$ trial.

$$
\begin{aligned}
\mathrm{E}(\mathrm{Y}) & =\pi \\
\operatorname{Var}(\mathrm{Y}) & =\pi(1-\pi)
\end{aligned}
$$

For an explanatory variable $x, \pi=\pi(x)$ varies as χ varies.

Linear Probability Model

$$
\pi(x)=\alpha+\beta x
$$

A GLM with binomial random component and identity link function.
$\operatorname{Var}(\mathrm{Y})=\pi(x)[1-\pi(x)]$ varies as x varies, so least squares not optimal.

Use ML to fit this and other GLMs.

Infant Malformation

$\mathrm{Y}=$ infant sex organ malformation $\quad(1=$ present, $\quad 0=$ absent $)$
$\chi=$ mother's alcohol consumption (avg drinks per day)

Alcohol Consumption	
Measured	Score
0	0.0
<1	0.5
$1-2$	1.5
$3-5$	4.0
$\geqslant 6$	7.0

Infant Malformation (ctd)

> data(malformation)
> malformation

	Alcohol Malformation	Freq	
1	0.0	Present	48
2	0.0	Absent	17066
3	0.5	Present	38
4	0.5	Absent	14464
5	1.5	Present	5
6	1.5	Absent	788
7	4.0	Present	1
8	4.0	Absent	126
9	7.0	Present	1
10	7.0	Absent	37

Example (Intant Malformation (cta))
> malform.tab <- xtabs(Freq ~ Alcohol + Malformation, data=malformation)
> malform.tab
Malformation
Alcohol Absent Present

0	17066	48
0.5	14464	38
1.5	788	5
4	126	1
7	37	1

> round(100*prop.table(malform.tab, 1), 2)
Malformation
Alcohol Absent Present

0	99.72	0.28
0.5	99.74	0.26
1.5	99.37	0.63
4	99.21	0.79
7	97.37	2.63

Infant Malformation (ctd)

To fit a glm to these (grouped binary) data, we first need to recast the data frame into a wide format.
> library(reshape2)
> malformwide <- dcast(malformation, Alcohol ~ Malformation,
value.var="Freq")
> malformwide
Alcohol Absent Present

1	0.0	17066	48
2	0.5	14464	38
3	1.5	788	5
4	4.0	126	1
5	7.0	37	1

Infant Malformation: Linear Probability Model

Two ways to fit the same binomial model in R.
> malform.lin <-
glm(cbind(Present, Absent) ~ Alcohol, family=binomial(link=make.link("identity")), data=malformwide)
> malformwide <-
transform(malformwide, Total = Present + Absent)
> malform.lin.alt <-
glm(Present/Total ~ Alcohol, weights=Total, family=binomial(link=make.link("identity")), data=malformwide)
> coef(malform.lin)
$\begin{array}{rr}\text { (Intercept) } & \text { Alcohol } \\ 0.0025476 & 0.0010872\end{array}$
> summary(malform.lin)

Call:

```
glm(formula = cbind(Present, Absent) ~ Alcohol, family = binomie
    data = malformwide)
```

Deviance Residuals:

1	2	3	4	5
0.656	-1.049	0.863	0.130	0.828

Coefficients:

	Estimate	Std. Error z	value	$\operatorname{Pr}(>\|z\|)$
(Intercept)	0.002548	0.000352	7.23	$4.8 e-13$
Alcohol	0.001087	0.000832	1.31	0.19

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 6.2020 on 4 degrees of freedom Residual deviance: 2.9795 on 3 degrees of freedom AIC: 25.61

Number of Fisher Scoring iterations: 10

Infant Malformation: Linear Probability Model (ctd)

Linear probability model for $\pi=\operatorname{Pr}$ (malformation) has ML fit

$$
\hat{\pi}=\hat{\alpha}+\hat{\beta} x=0.0025+0.0011 x
$$

∇ At $x=0, \hat{\pi}=\hat{\alpha}=0.0025$.
$\triangleright \hat{\pi}$ increases by $\hat{\beta}=0.0011$ for each 1-unit increase in alcohol consumption.

Remarks

- ML estimates $\hat{\alpha}$ and $\hat{\beta}$ obtained by iterative numerical optimization.
- To test $H_{0}: \beta=0$ (independence), can use $z=\frac{\hat{\beta}-0}{\operatorname{SE}(\hat{\beta})}$.

For large n has approx. std. normal dist. under H_{0}.

$$
\text { > } z=\frac{0.0011}{0.00083}=1.31 \quad \text { For } H_{a}: \beta \neq 0, \quad p \text {-value }=0.19
$$

- Could use Pearson X^{2} (or G^{2}) to test independence, but ignores ordering of rows.
- Alternative way to apply X^{2} (or deviance G^{2}) is to test fit of model: compares observed counts to values predicted by fitted model.
- Same fit results if we enter 5 binomial "success counts" or the 32574 individual binary responses of 0 (failure) or 1 (success).
- Problem: Model $\pi(x)=\alpha+\beta x$ can give $\hat{\pi}>1$ or $\hat{\pi}<0$. More realistic models take $\pi(x)$ to be nonlinear in x.

Logistic Regression Model

$$
\log \left(\frac{\pi}{1-\pi}\right)=\alpha+\beta x
$$

is a GLM for binomial Y with logit link.

In R, the default link for the binomial family is the logit.
Infant Malformation: Logistic Regression Model
> malform.logit <- glm(cbind(Present,Absent) ~ Alcohol, family=binomial, data=malformwide)
> summary(malform.logit)

Call:

```
glm(formula = cbind(Present, Absent) ~ Alcohol, family = binomial,
    data = malformwide)
```

Deviance Residuals:

1	2	3	4	5
0.592	-0.880	0.886	-0.145	0.129

Coefficients:
Estimate Std. Error z value Pr $(>|z|)$

(Intercept)	-5.960	0.115	-51.64	$<2 \mathrm{e}-16$
Alcohol	0.317	0.125	2.52	0.012

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 6.2020 on 4 degrees of freedom Residual deviance: 1.9487 on 3 degrees of freedom AIC: 24.58

Number of Fisher Scoring iterations: 4

Infant Malformation: Logistic Regression Model (ctd)

$$
\operatorname{logit}(\hat{\pi})=\log \left(\frac{\hat{\pi}}{1-\hat{\pi}}\right)=-5.96+0.32 x
$$

$\vee \hat{\pi} \uparrow$ as $\chi \uparrow$.
$>p$-value $=0.012$ for $\mathrm{H}_{0}: \beta=0$ vs $\mathrm{H}_{\mathrm{a}}: \beta \neq 0$.

- But p-value $=0.3$ if delete single "present" obs. in $\geqslant 6$ drinks row!!

Remarks

- Chap. 4 studies logistic regression model.
- For contingency table, can test H_{0} : "model correctly specified" with X^{2} and G^{2} test statistics using expected counts predicted by model.
- Ex: $\mathrm{X}^{2}=2.05, \mathrm{G}^{2}=1.95$ for H_{0} : logistic model correct. $\mathrm{df}=3=(5$ binomial obs $)-(2$ parameters $)$ p-value large, no evidence against H_{0}.
- Both linear probability model and logistic regression model fit infant malformation data adequately. How is this possible?

$$
\text { logistic } \approx \text { linear when } \hat{\pi} \text { near } 0 \text { for all observed } x .
$$

Ditto when $\hat{\pi}$ near 1 for all observed x.

3.3 GLMs for Count Data

When Y is a count $(0,1,2,3, \ldots)$ usually assume a Poisson dist:
$P(y)=\frac{\mu^{y} e^{-\mu}}{y!}, \quad y=0,1,2, \ldots$

- $\mu=\mathrm{E}(\mathrm{Y})$
- $\operatorname{Var}(Y)=\mu, \quad \sigma=\sqrt{\mu}$
- In practice often $\sigma^{2}>\mu$, i.e., variation greater than predicted by Poisson (overdispersion).
- Negative binomial dist. has separate parameter for σ^{2} and allows for overdispersion.
> plot(0:10, dpois(0:10,2.25), type="h",
xlab="y", ylab="p(y)", main="Poisson(mu=2.25)")
> plot(0:18, dpois(0:18,7.3), type="h",
xlab="y", ylab="p(y)", main="Poisson(mu=7.3)")

Poisson Regression for Count Data

Assume Y has a Poisson dist., x an explanatory variable.
Model:

$$
\mu=\alpha+\beta x \quad \text { identity link }
$$

or

$$
\log (\mu)=\alpha+\beta x \quad \text { log link }
$$

Loglinear models use Poisson with log link (details in Ch. 7)
$\mathrm{Y}=$ number defects on silicon wafer
$x=$ dummy var. for treatment $(0=A, 1=B)$
$>\mathrm{A}<-\mathrm{c}(8,7,6,6,3,4,7,2,3,4)$
$>\mathrm{B}<-\mathrm{c}(9,9,8,14,8,13,11,5,7,6)$
> trt <- factor (rep(c("A","B"), each=10))
> wafers <- data.frame(trt=trt, defects=c(A,B))
> wafers.lin <- glm(defects ~ trt, family=poisson(link="identity"), data=wafers)
> wafers.loglin <- glm(defects ~ trt, family=poisson(link="log"), data=wafers)
> summary(wafers.lin)
> summary(wafers.loglin)

Call:

```
glm(formula = defects ~ trt, family = poisson(link = "identity")
    data = wafers)
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-1.528	-0.762	-0.170	0.694	1.540

Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	5.000	0.707	7.07	$1.5 e-12$
trtB	4.000	1.183	3.38	0.00072

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 27.857 on 19 degrees of freedom Residual deviance: 16.268 on 18 degrees of freedom AIC: 94.35

Number of Fisher Scoring iterations: 3

Call:

```
glm(formula = defects ~ trt, family = poisson(link = "log"),
    data = wafers)
```

Deviance Residuals:

Min	1Q	Median	3Q	Max
-1.528	-0.762	-0.170	0.694	1.540

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept)
trtB

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 27.857 on 19 degrees of freedom Residual deviance: 16.268 on 18 degrees of freedom AIC: 94.35

Number of Fisher Scoring iterations: 4

Defects in Silicon Wafers (ctd)

For linear model $\mu=\alpha+\beta x$ (identity link)

$$
\begin{aligned}
& \hat{\mu}=5+4 x \\
& x=0: \quad \hat{\mu}_{A}=5 \quad\left(=\bar{y}_{A}\right) \\
& x=1: \quad \hat{\mu}_{B}=5 \quad\left(=\bar{y}_{B}\right) \\
& \hat{\beta}=4=\hat{\mu}_{B}-\hat{\mu}_{A} \text { has } S E=1.18 \text { (use for test and } \mathrm{Cl} \text { for } \beta \text {) }
\end{aligned}
$$

For loglinear model $\log (\mu)=\alpha+\beta x$ (log link)

$$
\begin{aligned}
& \log (\hat{\mu})=1.609+0.588 x \\
& x=0: \quad \log \hat{\mu}_{A}=1.609 \quad \hat{\mu}_{A}=e^{1.609}=5 \\
& x=1: \quad \log \hat{\mu}_{B}=1.609+0.588=2.197 \quad \hat{\mu}_{B}=e^{2.197}=9
\end{aligned}
$$

3.4 Inference and Model Checking for GLMs

Wald Test

Test $H_{0}: \beta=0$
$\downarrow z=\frac{\hat{\beta}}{S E}$ has approx. $\mathrm{N}(0,1)$ dist. under H_{0}.

- For $H_{a}: \beta \neq 0$ can also use Wald stat. $z^{2}=\left(\frac{\hat{\beta}}{S E}\right)^{2}$ approx. χ_{1}^{2}.
- For $H_{0}: \beta=\beta_{0}$, use $z=\frac{\hat{\beta}-\beta_{0}}{S E}$.
- Wald $\mathrm{CI}=$ set of β_{0} values for which $\left|\hat{\beta}-\beta_{0}\right| / \mathrm{SE}<z_{\alpha / 2}$, i.e.,

$$
\hat{\beta} \pm z_{\alpha / 2} S E
$$

Likelihood Ratio Test

Test $\mathrm{H}_{0}: \beta=0$ vs $\mathrm{H}_{\mathrm{a}}: \beta \neq 0$
$l_{0}=$ maximized likelihood when $\beta=0$
$l_{1}=$ maximized likelihood for arbitrary β

$$
\begin{aligned}
\text { test stat } & =-2 \log \left(\frac{l_{0}}{l_{1}}\right) \\
& =-2\left[\log l_{0}-\log l_{1}\right] \\
& =-2\left(L_{0}-L_{1}\right)
\end{aligned}
$$

where $\mathrm{L}=$ maximized log-likelihood.

Defects in Silicon Wafers (ctd)

Log-linear model: $\log (\mu)=\alpha+\beta \chi$.
$\beta=\log \mu_{B}-\log \mu_{A}$
$\mathrm{H}_{0}: \mu_{\mathcal{A}}=\mu_{\mathrm{B}} \Longleftrightarrow \beta=0$

Wald Test

$$
z=\frac{\hat{\beta}}{S E}=\frac{0.588}{0.176}=3.33 \quad p \text {-value }=2 \times 0.00043=0.00086
$$

or

$$
z^{2}=11.1 \quad \mathrm{df}=1 \quad \mathrm{p} \text {-value }=0.00086
$$

Likelihood-Ratio Test

$\mathrm{L}_{1}=-45.17 \quad \mathrm{~L}_{0}=-50.97$
Test stat: $\quad-2\left(L_{0}-L_{1}\right)=11.6 \quad d f=1 \quad p$-value $=0.00066$

For binomial and Poisson GLMs, LR test statistics can be computed as a difference in deviances for two nested models. In R:

- the deviance for the fitted model is labelled as the "residual deviance." Analogous to the residual (or error) sum of squares in ordinary linear regression.
- the "null deviance" is the deviance for the model with intercept only (no predictors). Analogous to the total sum of squares.
- the difference between null and residual deviances is the LR statistic for testing the null hypothesis that all the regression coefficients (except for the intercept) equal 0 . Analogous to the regression sum of squares.
- With only a single predictor x, the difference in null and residual deviances is the LR statistic for testing $\beta=0$, e.g.,
$27.9-16.3=11.6$.

The drop1 function tests one coefficient at a time, while controlling for all other variables in the model. (Here there are no other variables in the model.)
> drop1(wafers.loglin, test="Chisq")
Single term deletions

Model:
defects ~ trt

	Df	Deviance	AIC	LRT	Pr (>Chi)
<none>		16.3	94.3		
trt	1	27.9	103.9	11.6	0.00066

The anova function is useful for testing a sequence of nested models. Here only one fitted model is given, so it is tested against the null model with all coefficients equal to zero (intercept-only model).
> anova(wafers.loglin, test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log

Response: defects
Terms added sequentially (first to last)

	Df	Deviance Resid. Df Resid. Dev	$\operatorname{Pr}(>C h i)$		
NULL			19	27.9	
trt	1	11.6	18	16.3	0.00066

Remarks

- For very large n, Wald and LR tests are approx. equivalent, but for small to moderate n the LR test is more reliable and powerful.
- LR method also extends to Cls: $(1-\alpha) \times 100 \% \mathrm{Cl}$ is set of β_{0} for which p-value $>\alpha$ in LR test of $\mathrm{H}_{0}: \beta=\beta_{0}$. Computed by confint () function in R.

Wafer Defects

Log-linear model: $\log (\mu)=\alpha+\beta x$.

$$
\begin{aligned}
& \beta=\log \mu_{B}-\log \mu_{A}=\log \left(\frac{\mu_{B}}{\mu_{A}}\right) \\
& e^{\beta}=\frac{\mu_{B}}{\mu_{A}} \\
& e^{\hat{\beta}}=e^{0.5878}=1.8=\frac{\hat{\mu}_{B}}{\hat{\mu}_{A}}
\end{aligned}
$$

95% Wald Cl for $\beta: 0.588 \pm(1.96)(0.176)=(0.242,0.933)$
$95 \% \mathrm{Cl}$ for $\mathrm{e}^{\beta}=\frac{\mu_{\mathrm{B}}}{\mu_{A}}: \quad\left(e^{0.242}, e^{0.933}\right)=(1.27,2.54)$
We are 95% confident that μ_{B} is from 1.27 to 2.54 times as large as μ_{A}.
Cl for β based on LR test is $(0.247,0.94)$.
Cl for $e^{\beta}=\mu_{\mathrm{B}} / \mu_{\mathrm{A}}$ is $\left(e^{0.247}, e^{0.94}\right)=(1.28,2.56)$.
> wafCI.LR <- confint(wafers.loglin)
> wafCI.Wald <- confint.default(wafers.loglin)
> wafCI.LR

	$2.5 \% 97.5 \%$	
(Intercept)	1.31884	1.8744
trtB	0.24691	0.9401
$>$	$\exp (w a f C I . L R)$	

$$
2.5 \% 97.5 \%
$$

(Intercept) 3.73916 .5168
trtB 1.28012 .5602
> wafCI.Wald

	2.5%	97.5%
(Intercept)	1.33226	1.88662
trtB	0.24208	0.93349

Deviance

The saturated model has a separate parameter for each observation and fits the data perfectly: $\hat{\mu}_{i}=y_{i}$.

For a model M with maximized log-likelihood L_{M}

$$
\text { deviance }=-2\left(L_{M}-L_{S}\right) \quad \text { where } S \text { is the saturated model }
$$

The deviance is the LR stat. for comparing model M to the saturated model S, i.e., for

$$
H_{0}: \text { model } M \text { holds vs } H_{\mathrm{a}}: \text { saturated model }
$$

Tests that all parameters in S but not in M are equal to 0 .

For binomial and Poisson models for counts

$$
\text { deviance }=G^{2}=2 \sum y_{i} \log \left(\frac{y_{i}}{\hat{\mu}_{i}}\right)
$$

where the $\hat{\mu}_{i} s$ computed for M. (Sum is over success and failure counts for binomial.)

When the $\hat{\mu}_{i}$ are large and the number of predictor settings is fixed, G^{2} and Pearson's chi-square statistic

$$
x^{2}=\sum_{i} \frac{\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{\hat{\mu}_{i}}
$$

can used to test goodness-of-fit of model (i.e., H_{0} : model holds).
Under H_{0}, the distribution of G^{2} (and X^{2}) is approx. χ^{2} with
df $=$ no. observations - no. model parameters

Wafer Defects (ctd)

$\hat{\mu}_{\mathrm{i}}=5$ for 10 obs in trt A
$\hat{\mu}_{i}=9$ for 10 obs in trt B
For loglinear model, $\log \mu=\alpha+\beta x$:
deviance $\mathrm{G}^{2}=16.3$
Pearson $X^{2}=16$
df $=18$
These values of G^{2} and X^{2} do not contradict H_{0} : "model holds", but in general we must be cautious about referring G^{2} and/or X^{2} to a chi-square dist. Usually we require
$>\hat{\mu}_{i} s$ all large, and

- fixed df as $n \uparrow$ (happens with contingency tables but not here).

Remarks

- For GLMs, can study lack-of-fit using residuals (later chapters).
- Count data often show overdispersion relative to a Poisson GLM.
l.e., at fixed x, sample variance > mean, whereas variance $=$ mean in Poisson.

Overdispersion may be caused by subject heterogeneity. Ex: $Y=$ no. times attended religious services in past year.
Suppose $\mu=25$. Is $\sigma^{2}=25(\sigma=5) ?$

Negative Binomial Regression

More flexible model for count data that has

$$
E(Y)=\mu \quad \operatorname{Var}(Y)=\mu+D \mu^{2}
$$

where $\mathrm{D} \geqslant 0$ is called a dispersion parameter.
As $\mathrm{D} \downarrow 0, \quad$ neg. binom. \rightarrow Poisson.
(Can derive neg. binom. as a "gamma mixture of Poissons", where the Poisson mean varies according to a gamma dist.)

Negative binomial regression models can be fit using the VGAM package for R. Also the MASS package, and probably some others.

Known Victims of Homicide

Within the past 12 months, how many people have you known personally that were victims of homicide?
> homicide <-
data.frame(nvics=rep (0:6, 2), race=rep(c("Black", "White"), each=7), Freq=c $(119,16,12,7,3,2,0,1070,60,14,4,0,0,1))$
> xtabs(Freq ~ race + nvics, data=homicide)
nvics

race	0	1	2	3	4	5	6
Black	119	16	12	7	3	2	0
White	1070	60	14	4	0	0	1

Black: $\quad n=159, \quad \bar{y}=0.52, \quad s^{2}=1.14$
White: $\quad n=1149, \quad \bar{y}=0.09, \quad s^{2}=0.16$
At these sample sizes, very unusual to see such large discrepancies between \bar{y} and s^{2} if the samples drawn from Poisson distributions.

Known Victims of Homicide (ctd)

You can safely ignore this slide if you wish.

> n <- with(homicide, tapply(Freq, race, sum))
> ybar <- by (homicide, homicide\$race,

$$
\text { function(x) weighted.mean(x\$nvics, } x \$ F r e q))
$$

> homicide\$ybar <- rep(ybar, each=7)
> s2 <-
by (homicide, homicide\$race, function(x) weighted.mean((x\$nvics - x\$ybar) ^2, x\$Freq))
> cbind(n, ybar,s2)

	n	ybar	s2
Black	159	0.522013	1.14260
White	1149	0.092254	0.15511

Known Victims of Homicide (ctd)

Model: $\log (\mu)=\alpha+\beta x$
> \#\# homicide <-
> \#\# transform(homicide, race = relevel(race, "White"))
> options(contrasts=c("contr.SAS","contr.poly"))
> hom.poi <-
glm(nvics ~ race, data=homicide, weights=Freq,
family=poisson)
> library(MASS)
> hom.nb <-
glm.nb(nvics ~ race, data=homicide, weights=Freq)
> summary(hom.poi)
> summary(hom.nb)

Call:

$$
\begin{aligned}
\text { glm (formula } & =\text { nvics } \sim \text { race }, \text { family }=\text { poisson, data }=\text { homicide } \\
\text { weights } & =\text { Freq })
\end{aligned}
$$

Deviance Residuals:

Min	1Q	Median	3Q	Max
-14.05	0.00	5.26	6.22	13.31

Coefficients:

	Estimate Std. Error z value	$\operatorname{Pr}(>\|z\|)$		
(Intercept)	-2.3832	0.0971	-24.5	$<2 \mathrm{e}-16$
raceBlack	1.7331	0.1466	11.8	$<2 \mathrm{e}-16$

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 962.80 on 10 degrees of freedom Residual deviance: 844.71 on 9 degrees of freedom AIC: 1122

Number of Fisher Scoring iterations: 6

Call:

```
glm.nb(formula = nvics ~ race, data = homicide, weights = Fre
    init.theta = 0.2023119205, link = log)
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-12.75	0.00	2.09	3.28	9.11

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	-2.383	0.117	-20.33	$<2 e-16$
raceBlack	1.733	0.238	7.27	$3.7 \mathrm{e}-13$

(Dispersion parameter for Negative Binomial (0.2023) family ta
Null deviance: 471.57 on 10 degrees of freedom Residual deviance: 412.60 on 9 degrees of freedom AIC: 1002

Number of Fisher Scoring iterations: 1

Theta: 0.2023
Std. Err.: 0.0409

2 x log-likelihood: -995.7980

Known Victims of Homicide (ctd)

In this example, both Poisson and neg. binom. model fits have

$$
\begin{aligned}
& \log \hat{\mu}=\boxed{-2.38}+1.73 x \\
& e^{\hat{\beta}}=e^{1.73}=5.7 \quad\left(=\frac{\bar{y} B}{\bar{y} W}=\frac{0.522}{0.092}\right)
\end{aligned}
$$

But, SE for $\hat{\beta}$ is 0.147 for Poisson, 0.238 for neg. binom.
Wald $95 \% \mathrm{Cl}$ for β is
$1.73 \pm(1.96)(0.147)=(1.45,2.02)$ for Poisson fit
$1.73 \pm(1.96)(0.238)=(1.27,2.2)$ for neg. binom. fit
Leads to $95 \% \mathrm{Cl}$ for $\mathrm{e}^{\beta}=\mu_{\mathrm{B}} / \mu_{W}$ of
$\left(e^{1.45}, e^{2.02}\right)=(4.25,7.54)$ for Poisson
$\left(e^{1.27}, e^{2.2}\right)=(3.55,9.03)$ for neg. binom.
In accounting for overdispersion, neg. binom. model gives wider Cls.
> confint.default(hom.poi)

	2.5 \% 97.5\%
(Intercept)	-2.5736-2.1928
raceBlack	1.44592 .0204
> exp(confint.default(hom.poi))	
	2.5 \% 97.5 \%
(Intercept)	0.0762620 .1116
raceBlack	4.2455747 .5414
> \#\# confint.default (hom.nb)	
> exp(confin	nt.default(hom.nb))

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) 0.073320 .11608
raceBlack 3.545719 .02998
> confint(hom.poi)

	$2.5 \% \quad 97.5 \%$
(Intercept)	-2.5798-2.1987
raceBlack	1.44372 .0192
> exp(confint(hom.poi))	
	2.5 \% 97.5 \%
(Intercept)	0.0757880 .11095
raceBlack	4.2363337 .53253
> \#\# confint	(hom.nb)
> exp(confin	nt (hom.nb))

	2.5%	97.5%
(Intercept)	0.07306	0.11573
raceBlack	3.57785	9.13164

Known Victims of Homicide (ctd)

95% LR CIs for $e^{\beta}=\mu_{\mathrm{B}} / \mu_{\mathrm{W}}$ are:
$>\left(e^{\boxed{1.44}}, e^{2.02}\right)=(\sqrt{4.24}, \sqrt{7.53})$ for Poisson
$>\left(e^{1.27}, e^{2.21}\right)=(\sqrt{3.58}, 9.13)$ for neg. binom.

Remarks

- For negative binomial model, estimated value of D is $\widehat{\mathrm{D}}=4.94$ ($\mathrm{SE}=1.00$).

$$
\widehat{\operatorname{Var}(Y)}=\hat{\mu}+\widehat{\mathrm{D}} \hat{\mu}^{2}=\hat{\mu}+4.94 \hat{\mu}^{2}
$$

Strong evidence of overdispersion $(\mathrm{D} \neq 0)$.

- Note that glm.nb returns $\hat{\theta}=1 / \widehat{D}=0.2023$ ($\mathrm{SE}=0.0409$).

$$
\widehat{\operatorname{Var}(Y)}=\hat{\mu}+\frac{\hat{\mu}^{2}}{\hat{\theta}}=\hat{\mu}+\frac{\hat{\mu}^{2}}{0.2023}=\hat{\mu}+4.94 \hat{\mu}^{2}
$$

- Output degrees of freedom for deviance are wrong because we used weights=Freq instead of a data frame with $159+1149=1308$ rows. Fitted model unchanged.

This slide and the next (output of summary (hom. poi2)) can be ignored.
> homicide2 <- homicide[rep(1:14, homicide\$Freq),]
> homicide2\$Freq <- NULL
> homicide2\$ybar <- NULL
> head(homicide2)

| | nvics |
| :--- | ---: | race

> hom.poi2 <-
glm(nvics ~ race, data=homicide2, family=poisson)
> summary(hom.poi2)

Call:

```
glm(formula = nvics ~ race, family = poisson, data = homicide
```

Deviance Residuals:

Min	1Q	Median	3Q	Max
-1.02	-0.43	-0.43	-0.43	6.19

Coefficients:

	Estimate	Std. Error z value $\operatorname{Pr}(>\|z\|)$		
(Intercept)	-2.3832	0.0971	-24.5	$<2 \mathrm{e}-16$
raceBlack	1.7331	0.1466	11.8	$<2 \mathrm{e}-16$
(Dispersion parameter for poisson family taken to be 1)				

Null deviance: 962.80 on 1307 degrees of freedom Residual deviance: 844.71 on 1306 degrees of freedom AIC: 1122

Number of Fisher Scoring iterations: 6

Remarks

- When Y is a count, overdispersion relative to Poisson is common. Safest strategy is to use neg. bin. model or some other method that allows for overdispersion (e.g., quasi-Poisson GLM).
- May also have zero-inflated counts (excess of zeros relative to Poisson distribution). VGAM and other packages contain code for fitting ZIP (zero-inflated Poisson) and hurdle models.

Models for Rates

When y_{i} have different bases
(e.g., number murders for cities with different pop. sizes) more relevant to model rate at which events occur.

Let $y=$ count with base t. Sample rate is $\frac{y}{t}$.
$E\left(\frac{Y}{t}\right)=\frac{\mu}{t}$
Loglinear model $\log \left(\frac{\mu}{t}\right)=\alpha+\beta x$
i.e., $\quad \log (\mu)-\log (t)=\alpha+\beta x$.
$\log (\mathrm{t})$ is an offset.
See pp. 82-84 of text for discussion.

British Train Accidents over Time

Have collisions between trains and road vehicles become more prevalent over time?

Total number of train-km (in millions) varies from year to year.
Model annual rate of train-road collisions per million train-km with $t=$ annual no. of train-km and $\quad x=$ no. of years since 1975.
> data(traincollisions)
> trains.loglin <-

$$
\begin{gathered}
\text { glm(TrRd ~ I(Year-1975), offset }=\log (K M), \\
\text { family=poisson, data=traincollisions) }
\end{gathered}
$$

> summary(trains.loglin)

Call:

$$
\begin{aligned}
& \text { glm(formula }=\operatorname{TrRd} \sim I(\text { Year }-1975), \text { family }=\text { poisson, data } \\
& \text { offset }=\log (K M))
\end{aligned}
$$

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-2.058	-0.783	-0.083	0.377	3.387

Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	-4.2114	0.1589	-26.50	$<2 e^{-16}$
I (Year - 1975)	-0.0329	0.0108	-3.06	0.0022

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 47.376 on 28 degrees of freedom Residual deviance: 37.853 on 27 degrees of freedom AIC: 133.5

Number of Fisher Scoring iterations: 5

British Train Accidents (ctd)

$$
\begin{aligned}
& \log \left(\frac{\hat{\mu}}{t}\right)=-4.21-0.0329 x \\
& \frac{\hat{\mu}}{t}=\exp (-4.21-0.0329 x \\
& \quad=(0.0148)(0.968)^{x}
\end{aligned}
$$

\downarrow Rate estimated to decrease by $1-0.968=0.032=3.2 \%$ per yr from 1975 to 2003.

- Est. rate for $1975(x=0)$ is 0.0148 per million km (15 per billion).
- Est. rate for $2003(x=28)$ is 0.0059 per million km (6 per billion).
- Overdispersion? Try negative binomial. Similar fit w/ SEs and p-values slightly larger.

```
> trains.nb <-
    glm.nb(TrRd ~ I(Year-1975) + offset(log(KM)),
    data=traincollisions)
```

> attach(traincollisions)
> plot(Year, 1000*TrRd/KM, ylim=c (0,1000*max (TrRd/KM)), ylab="Collisions per Billion Train-Kilometers")
> curve(1000*exp(-4.21 - 0.0329*(x-1975)), add=TRUE)
> detach(traincollisions)

4. Logistic Regression

Simple Logistic Regression

$$
\begin{aligned}
& Y=0 \text { or } 1 \\
& \pi=\operatorname{Pr}(Y=1) \\
& \operatorname{logit}[\pi(x)]=\log \left(\frac{\pi(x)}{1-\pi(x)}\right)=\alpha+\beta x
\end{aligned}
$$

Uses "logit" link for binomial Y. Equivalently,

$$
\pi(x)=\frac{\exp (\alpha+\beta x)}{1+\exp (\alpha+\beta x)}
$$

where $\exp (\alpha+\beta x)=e^{\alpha+\beta x}$.

4.1 Interpreting the Logistic Regression Model I

- If $\beta>0$, then $\pi(x)$ increases as x increases. If $\beta<0$, then $\pi(x)$ decreases as x increases.
- If $\beta=0$, then $\pi(x)=\frac{e^{\alpha}}{1+e^{\alpha}}$ constant in x (with $\pi>\frac{1}{2}$ if $\alpha>0$).
- Curve can be approximated near a fixed point x by a straight line describing rate of change in $\pi(x)$. Slope is $\beta \pi(x)[1-\pi(x)]$. E.g.,
- at x with $\pi(x)=\frac{1}{2}$, slope $=\beta \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{\beta}{4}$
- at x with $\pi(x)=0.1$ or 0.9 , slope $=\beta(0.1)(0.9)=0.09 \beta$
- Steepest slope where $\pi(x)=\frac{1}{2}$

4.1 Interpreting the Logistic Regression Model II

- If $\pi(x)=\frac{1}{2}$ then

$$
\log \left(\frac{\pi(x)}{1-\pi(x)}\right)=\log \left(\frac{0.5}{0.5}\right)=\log (1)=0=\alpha+\beta x \Longrightarrow x=\frac{-\alpha}{\beta}
$$

$-\frac{1}{|\beta|} \approx$ dist. between x values with $\pi=0.5$ and $\pi=0.75$ (or 0.25)

- ML fit obtained with iterative numerical methods.

Horseshoe Crabs

Model the relationship between weight and the probability of having one or more "satellites" for female horseshoe crabs.
$Y= \begin{cases}1 & \text { if female crab has satellites } \\ 0 & \text { if no satellites }\end{cases}$
$\chi=$ weight $(\mathrm{kg}) \quad \pi(x)=$ probability of at least one satellite
Model: \quad logit $[\pi(x)]=\alpha+\beta x$
> data(horseshoecrabs)
> head(horseshoecrabs, 5)
Color Spine Width Weight Satellites

1	2	3	28.3	3.05	8
2	3	3	22.5	1.55	0
3	1	1	26.0	2.30	9
4	3	3	24.8	2.10	0
5	3	3	26.0	2.60	4

> nrow(horseshoecrabs)
[1] 173

> summary(crabs.fit1)

Call:

```
glm(formula = (Satellites > 0) ~ Weight, family = binomial,
```

Deviance Residuals:

Min	1Q	Median	3Q	Max
-2.111	-1.075	0.543	0.912	1.629

Coefficients:

| | Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$ | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | -3.695 | 0.880 | -4.20 | $2.7 \mathrm{e}-05$ |
| Weight | 1.815 | 0.377 | 4.82 | $1.4 \mathrm{e}-06$ |

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 195.74 on 171 degrees of freedom AIC: 199.7

Number of Fisher Scoring iterations: 4

Horseshoe Crabs: Fitted Logistic Regression on Weight

ML fit: $\quad \operatorname{logit}[\hat{\pi}(x)]=-3.69+1.82 x$

$$
\text { i.e., } \quad \hat{\pi}(x)=\frac{\exp (-3.69+1.82 x)}{1+\exp (-3.69+1.82 x)}
$$

E.g., at $x=\bar{x}=2.44$,

$$
\hat{\pi}=\frac{\exp \{-3.69+(1.82)(2.44)\}}{1+\exp \{-3.69+(1.82)(2.44)\}}=\frac{e^{0.729}}{1+e^{0.729}}=\frac{2.07}{3.07}=0.675
$$

> xbar <- mean(horseshoecrabs\$Weight)
> predict(crabs.fit1, data.frame(Weight=xbar), type="link")
1
0.72913
> predict(crabs.fit1, data.frame(Weight=xbar), type="response")

1
0.67461
> ab <- coef(crabs.fit1); ld50 <- -ab[1]/ab[2]
> names(ld50) <- NULL; ld50
[1] 2.0355
> predict(crabs.fit1, data.frame(Weight $=1 d 50+c(0,0.1,1)$), type="response")

Horseshoe Crabs: Fitted Logistic Regression on Weight

- $\hat{\beta}>0$, so $\hat{\pi} \uparrow$ as $x \uparrow$
$\downarrow \hat{\pi}=\frac{1}{2}$ when $x=-\frac{\hat{\alpha}}{\hat{\beta}}=\frac{3.69}{1.82}=2.04$
$\nabla \hat{\pi} \approx \frac{3}{4}$ when $x=2.04+\frac{1}{\hat{\beta}}=2.04+\frac{1}{\sqrt{1.82}}=2.04+0.55=2.59$
- $\hat{\pi} \approx \frac{1}{4}$ when $x=2.04-0.55=1.48$
- At $x=2.04$, the estimated slope is

$$
\hat{\beta} \hat{\pi}(1-\hat{\pi})=\frac{\hat{\beta}}{4}=\frac{1.82}{4}=0.454,
$$

i.e., for a small change in weight, Δx,

$$
\hat{\pi}(2.04+\Delta x) \approx \hat{\pi}(2.04)+0.454(\Delta x)=0.5+0.454(\Delta x)
$$

> logit <- make.link("logit")
> ab <- coef(crabs.fit1)
> attach(horseshoecrabs)
> plot(Weight, (Satellites > 0), xlim=c (0,6), ylim=c(0,1), xlab="Weight", ylab="Has Satellites")
> curve(logit\$linkinv(ab[1] + ab[2]*x), add=TRUE)
> detach(horseshoecrabs)

- Instantaneous rate of change of $\hat{\pi}(x)$ at $x=2.04$ is the slope, 0.454 per kg change in weight. This means that for a small change of $\Delta x \mathrm{~kg}$ in weight, $\hat{\pi}$ changes by about $0.454(\Delta x)$.
What is "small" here?
Sample std dev of weights is $s=0.58$; half the interquartile range is 0.43 . Small should be small relative to these amounts.

Δx	$\hat{\pi}(2.04+\Delta x)$	$0.5+(0.454)(\Delta x)$	Approximation is
0.1	0.545	0.545	Good
1.0	0.86	0.954	Poor

> sd(horseshoecrabs\$Weight)
[1] 0.57703
> IQR(horseshoecrabs\$Weight)/2
[1] 0.425

Horseshoe Crabs: Fitted Logistic Regression on Weight (ctd)

- At $x=5.2$ (max. obs. wt.), $\hat{\pi}=0.997$, and est. slope is $\hat{\beta} \hat{\pi}(1-\hat{\pi})=(1.82)(0.997)(0.003)=0.0058$.
If x increases by 0.1 kg , then $\hat{\pi}$ increases by
$\approx(0.1)(0.0058)=0.00058$.
- Rate of change of $\hat{\pi}(x)$ varies with x. E.g., it is 0.454 at $x=2.04$ and 0.0058 at $x=5.2$.

Remarks

- Fitting linear probability model (binomial w/ identity link) fails in the crabs example.
- If we assume $\mathrm{Y} \sim$ Normal and fit linear model $\mu=\alpha+\beta \chi$,

$$
\hat{\mu}=-0.415+0.323 x
$$

At $\chi=5.2, \hat{\mu}=1.53$!!! (estimated prob. of satellites)

- An alternative way to describe effect (not dependent on units of x) is

$$
\hat{\pi}(\mathrm{UQ})-\hat{\pi}(\mathrm{LQ})
$$

For $x=$ weight, $\mathrm{LQ}=2.00, \mathrm{UQ}=2.85$.
At $x=2.00, \hat{\pi}=0.483 ; \quad$ at $\chi=2.85, \hat{\pi}=0.814$.
$\Longrightarrow \hat{\pi}$ increases by 0.331 over middle half of x values.

Odds Ratio Interpretation

Since $\log \left(\frac{\pi}{1-\pi}\right)=\alpha+\beta x$, odds are

$$
\frac{\pi}{1-\pi}= \begin{cases}e^{\alpha+\beta x} & \text { at } x \\ e^{\alpha+\beta(x+1)}=e^{\alpha+\beta x} e^{\beta} & \text { at } x+1\end{cases}
$$

$$
\Longrightarrow \frac{\text { odds at }(x+1)}{\text { odds at } x}=\frac{e^{\alpha+\beta x} e^{\beta}}{e^{\alpha+\beta x}}=e^{\beta}
$$

More generally,

$$
\frac{\operatorname{odds} \text { at }(x+\Delta x)}{\text { odds at } x}=\frac{e^{\alpha+\beta(x+\Delta x)}}{e^{\alpha+\beta x}}=\frac{e^{\alpha+\beta x} e^{\beta \Delta x}}{e^{\alpha+\beta x}}=e^{\beta \Delta x}
$$

If $\beta=0$, then $e^{\alpha+\beta x}=e^{\alpha}$ and odds do not depend on x.

Horseshoe Crabs (ctd)

$$
\hat{\beta}=1.82 \Longrightarrow e^{\hat{\beta}}=e^{1.82}=6.1
$$

Estimated odds of having at least one satellite increase by a factor of 6.1 for each 1 kg increase in weight.

If weight increases by 0.1 kg , then estimated odds increase by factor

$$
e^{\sqrt{(1.82)(0.1)}}=e^{0.182}=1.20
$$

i.e., by 20 \%.

4.2 Inference for Logistic Regression

Confidence Intervals

Wald $(1-\alpha) 100 \% \mathrm{CI}$ for β is $\hat{\beta} \pm z_{\alpha / 2}$ SE

Horseshoe Crabs (ctd)

95\% Cl for β :

$$
1.82 \pm(1.96)(0.377)=1.82 \pm 0.74=(1.08,2.55)
$$

$95 \% \mathrm{Cl}$ for e^{β}, multiplicative effect of a 1 -kg increase in weight on odds:

$$
\left(e^{1.08}, e^{2.55}\right)=(2.9,12.9)
$$

$95 \% \mathrm{Cl}$ for $e^{0.1 \beta}$, multiplicative effect on odds of 100 -gram increase, is

$$
\left(e^{0.108}, e^{0.255}\right)=(1.11,1.29)
$$

Odds estimated to increase by at least 11% and at most 29%.

Remarks

- Safer to use LR CI than Wald CI.

For crabs example, 95% LR CI for e^{β} is (see next slide)

$$
\left(e^{\sqrt{1.11}}, e^{2.60}\right)=(3.0,13.4)
$$

- Can also construct Cl for $\pi(x)$. The convenience function predCI () in the icda package does the calculation described in Section 4.2.6 of the text (see next slide).
- For crabs data, at $x=3.05$ (first crab), $\hat{\pi}=0.863$. A $95 \% \mathrm{Cl}$ for π at $x=3.05$ is $(0.766,0.924)$.
- For crabs data, at $x=\bar{x}=2.44, \hat{\pi}=0.675$.

A 95\% CI for π at $x=2.44$ is $(0.592,0.748)$.
> confint(crabs.fit1)

Hypothesis Tests for β

$H_{0}: \beta=0$ states that Y indep. of X (i.e., $\pi(x)$ constant in x)
$\mathrm{H}_{\mathrm{a}}: \beta \neq 0$

Wald Test

$z=\frac{\hat{\beta}}{S E}=\frac{1.815}{\overline{0.377}}=4.82$ or $\quad z^{2}=23.2, \mathrm{df}=1$ (chi-squared)
p-value <0.0001 : very strong evidence that $\pi \uparrow$ as weight \uparrow

Likelihood ratio test

When $\beta=0$, $\mathrm{L}_{0}=-112.88$ (maximized log-likelihood under H_{0})
When $\beta=\hat{\beta}, L_{1}=-97.87$
Test stat : $-2\left(\mathrm{~L}_{0}-\mathrm{L}_{1}\right)=30.02$, df $=1$ (chi-sq)
p-value <0.0001
> drop1(crabs.fit1, test="Chisq")
Single term deletions

Model:
(Satellites > 0) ~ Weight
Df Deviance AIC LRT Pr(>Chi)
<none> 196200
Weight $1 \quad 226228 \quad 30 \quad 4.3 e-08$
> \# anova(crabs.fit1, test="Chisq")

Remark

Recall for a model M,

$$
\text { deviance }=-2\left(L_{M}-L_{S}\right)
$$

L_{S} is log-likelihood under saturated model (perfect fit).
To compare model M_{0} with more complex model M_{1},

$$
\begin{aligned}
\text { LR statistic } & =-2\left(\mathrm{~L}_{0}-\mathrm{L}_{1}\right) \\
& =-2\left[\left(\mathrm{~L}_{0}-\mathrm{L}_{\mathrm{S}}\right)-\left(\mathrm{L}_{1}-\mathrm{L}_{\mathrm{S}}\right)\right] \\
& =\left[-2\left(\mathrm{~L}_{0}-\mathrm{L}_{\mathrm{S}}\right)\right]-\left[-2\left(\mathrm{~L}_{1}-\mathrm{L}_{\mathrm{S}}\right)\right] \\
& =\text { difference of (residual) deviances for two models }
\end{aligned}
$$

Horseshoe Crabs (ctd)

Model: $\operatorname{logit}[\pi(x)]=\alpha+\beta x \quad$ (this is M_{1})
$\mathrm{H}_{0}: \beta=0 \Longrightarrow \operatorname{logit}[\pi(x)]=\alpha \quad$ (this is M_{0})
diff. of deviances $=225.76-195.74=30.02=$ LR stat.

4.3-4.4 Multiple Logistic Regression

Y binary, $\quad \pi=\operatorname{Pr}(Y=1)$
$x_{1}, x_{2}, \ldots, x_{k}$ can be quantitative, qualitative (dummy variables), or both.
Model form is

$$
\operatorname{logit}(\pi)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

or equivalently

$$
\pi=\frac{\exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}\right)}{1+\exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}\right)}
$$

$\beta_{i}=$ partial effect of x_{i} controlling for other variables in model
$e^{\beta_{i}}=$ cond. odds ratio at $x_{i}+1$ vs at x_{i} keeping other x^{\prime} 's fixed $=$ multi. effect on odds of 1 -unit incr. in $x_{i}, w /$ other x 's fixed

Horseshoe Crabs: Logistic Regression on Color and Weight

$Y= \begin{cases}1 & \text { sampled female has at least } 1 \text { satellite } \\ 0 & \text { sampled female has no satellites }\end{cases}$
$\chi=$ Weight
$\mathrm{c}=$ Color (qualitative w/ 4 categories)

$$
c_{2}=\left\{\begin{array}{ll}
1 & \text { medium } \\
0 & 0 / w
\end{array} \quad c_{3}=\left\{\begin{array}{ll}
1 & \text { dark med } \\
0 & 0 / w
\end{array} \quad c_{4}= \begin{cases}1 & \text { dark } \\
0 & 0 / w\end{cases}\right.\right.
$$

For "light medium" crabs, $\mathrm{c}_{2}=\mathrm{c}_{3}=\mathrm{c}_{4}=0$.
Original data set had color coded 1-4 for "light med", "medium", "dark med", and "dark". R interprets this as a numeric variable, so we must convert it to factor.

Remark

To match textbook's dummy variables (c_{1}, c_{2}, c_{3}), use
> options(contrasts=c("contr.SAS","contr.poly"))
We are using R's default, which is
> options(contrasts=c("contr.treatment","contr.poly"))
Textbook also uses crab width instead of weight.
> horseshoecrabs <-
transform(horseshoecrabs, C = as.factor(Color))
> levels(horseshoecrabs\$C)
[1] "1" "2" "3" "4"
> crabs.fit2 <-

$$
\begin{aligned}
& \text { glm((Satellites > 0) ~ C + Weight, family=binomial, } \\
& \text { data=horseshoecrabs) }
\end{aligned}
$$

> summary(crabs.fit2)

Call:

```
glm(formula = (Satellites > 0) ~ C + Weight, family = binomia
    data = horseshoecrabs)
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-2.191	-1.014	0.510	0.868	2.075

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	-3.257	1.198	-2.72	0.0066
C2	0.145	0.736	0.20	0.8441
C3	-0.186	0.775	-0.24	0.8102
C4	-1.269	0.849	-1.50	0.1348
Weight	1.693	0.389	4.35	$1.3 e-05$

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 188.54 on 168 degrees of freedom AIC: 198.5

Number of Fisher Scoring iterations: 4

Horseshoecrabs: Logistic Regression on Color and Weight (ctd)
Model:

$$
\operatorname{logit}[\operatorname{Pr}(Y=1)]=\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x
$$

has ML fit

$$
\operatorname{logit}(\hat{\pi})=-3.26+0.14 c_{2}-0.19 c_{3}-1.27 c_{4}+1.69 x
$$

$>$ For light med. female ($c_{2}=c_{3}=c_{4}=0$),

$$
\begin{aligned}
& \operatorname{logit}(\hat{\pi})=-3.26+1.69 x \\
& \text { At } x=\bar{x}=2.44, \\
& \hat{\pi}=\frac{\exp \{-3.26+1.69(2.44)\}}{1+\exp \{-3.26+1.69(2.44)\}}=0.704
\end{aligned}
$$

Horseshoecrabs: Logistic Regression on Color and Weight (ctd)

\Rightarrow For medium female ($c_{2}=1, c_{3}=c_{4}=0$),

$$
\operatorname{logit}(\hat{\pi})=-3.26+0.14+1.69 x=-3.11+1.69 x
$$

$$
\text { At } x=\bar{x}=2.44, \hat{\pi}=0.734
$$

- At each weight, estimate medium color females more likely than light med. to have satellites:

$$
\hat{\beta}_{2}=0.145 \Longrightarrow e^{\hat{\beta}_{2}}=e^{0.145}=1.16
$$

Estimated odds a medium color female has satellites are 1.16 times estimated odds for a light med. female of the same weight.
E.g., at $\chi=2.44$,

$$
\frac{\text { odds for medium }}{\text { odds for light-med }}=\frac{0.734 / 0.266}{0.704 / 0.296}=1.16
$$

Horseshoecrabs: Logistic Regression on Color and Weight (ctd)

- How do we compare, e.g., dark ($c_{2}=c_{3}=0, c_{4}=1$) to medium $\left(c_{2}=1, c_{3}=c_{4}=0\right) ?$

$$
\hat{\beta}_{4}-\hat{\beta}_{2}=-1.269-0.145=-1.41 \quad e^{-1.41}=0.243
$$

Estimated odds a dark crab has satellites are 0.24 times estimated odds a medium crab of same weight has satellites.
Equivalently,

$$
0.145-(-1.269)=1.41 \quad e^{1.41}=4.11 \quad(=1 / 0.243)
$$

Estimated odds a medium crab has satellites are 4.11 times estimated odds a dark crab of same weight has satellites.

Horseshoecrabs: Logistic Regression on Color and Weight (ctd)

- Model assumes no interaction between color and weight effects. Coef. of $x=$ Weight is same for each color ($\hat{\beta}=1.69$).
For fixed color, estimated odds of satellites at weight $(x+1)$ is $e^{1.69}=5.4$ times estimated odds at weight x.
Curves have same shape across colors, but shifted left or right.

Horseshoecrabs: Logistic Regression on Color and Weight (ctd)

- Do we need color in the model?

$$
H_{0}: \beta_{2}=\beta_{3}=\beta_{4}=0 \quad \text { (given weight, } Y \text { indep. of color) }
$$

Likelihood-ratio statistic

$$
-2\left(\mathrm{~L}_{0}-\mathrm{L}_{1}\right)=-2[(-97.9)-(-94.3)]=7.19
$$

or

$$
\text { diff. of deviances }=195.7-188.54=7.19
$$

$$
d f=171-168=3 \quad p \text {-value }=0.066
$$

Some evidence (not strong) of a color effect given weight.
There is strong evidence of weight effect ($\hat{\beta}=1.69$ has $S E=0.39$).
> anova(crabs.fit1, crabs.fit2, test="Chisq")
Analysis of Deviance Table

Model 1:	$($ Satellites $>0)$	\sim Weight		
Model 2:	$($ Satellites $>0)$	$\sim \mathrm{C}+$ Weight		
Resid.	Df Resid.	Dev	Df	Deviance $\operatorname{Pr}(>C h i)$
1	171	196		
2	168	188	3	7.19

> drop1(crabs.fit2, test="Chisq")
Single term deletions

Model:

(Satellites > 0) ~ C + Weight					
	Df Deviance AIC	LRT	Pr (>Chi)		
<none>	188	198			
C	3	196	200	7.19	0.066
Weight	1	212	220	23.52	$1.2 e-06$

Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

Other simple models are also adequate.

$$
\operatorname{logit}(\hat{\pi})= \begin{cases}-3.26+1.69 x, & \text { med-light } \\ -3.11+1.69 x, & \text { med } \\ -3.44+1.69 x, & \text { med-dark } \\ -4.53+1.69 x, & \text { dark }\end{cases}
$$

suggests

$$
\operatorname{logit}(\pi)=\alpha+\beta_{1} z+\beta_{2} x, \quad z= \begin{cases}1, & \text { dark } \\ 0, & 0 / w\end{cases}
$$

ML gives $\hat{\beta}_{1}=-1.295$ (SE = 0.522).
Estimated odds of satellites for a dark crab is $e^{-1.295}=0.27$ times estimated odds a non-dark crab of the same weight.
> crabs.fit3 <glm((Satellites > 0) ~ I(Color == 4) + Weight, family=binomial, data=horseshoecrabs)
> summary(crabs.fit3)
Call:

```
glm(formula = (Satellites > 0) ~ I(Color == 4) + Weight, fam-
    data = horseshoecrabs)
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-2.155	-1.023	0.513	0.848	2.087

Coefficients:

(Intercept)	-3.313	0.898	-3.69	0.00023
I (Color == 4) TRUE	-1.295	0.522	-2.48	0.01311
Weight	1.729	0.383	4.52	$6.2 \mathrm{e}-06$

(Dispersion parameter for binomial family taken to be 1)

Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

Compare model with 1 dummy for color to full model with 3 dummies.
H_{0} : simple model vs H_{a} : more complex model
Note H_{0} is $\beta_{2}=\beta_{3}=0$ in more complex model.
LR stat $=$ diff. in deviances $=189.17-188.54=0.63$
$\mathrm{df}=170-168=2 \quad \mathrm{p}$-value $=0.73$
Simpler model appears to be adequate.

Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

How about interaction?

$$
\operatorname{logit}(\pi)=\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x+\gamma_{2} c_{2} x+\gamma_{3} c_{3} x+\gamma_{4} c_{4} \chi
$$

Color	Dummies	Weight Coef
light-med	$c_{2}=c_{3}=c_{4}=0$	β
medium	$c_{2}=1, c_{3}=c_{4}=0$	$\beta+\gamma_{2}$
dark-med	$c_{3}=1, c_{2}=c_{4}=0$	$\beta+\gamma_{3}$
dark	$c_{4}=1, c_{2}=c_{3}=0$	$\beta+\gamma_{4}$

Testing H_{0} : no interaction $\left(\gamma_{2}=\gamma_{3}=\gamma_{4}=0\right)$

$$
\text { LR stat }=188.54-181.66=6.89 \quad d f=3 \quad p \text {-value }=0.076
$$

Weak evidence of interaction.
For easier interpretation, use simpler model (no interaction).
> crabs.fit4 <-
update (crabs.fit2, . ~ C*Weight)
> deviance(crabs.fit4)
[1] 181.66
> anova(crabs.fit2, crabs.fit4, test="Chisq")
Analysis of Deviance Table

Model 1:	$($ Satellites $>0)$	$\sim C+$ Weight		
Model 2:	$($ Satellites $>0)$	\sim C + Weight + C:Weight		
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>$ Chi)				
1	168	188		
2	165	182	3	6.89

> drop1(crabs.fit4, test="Chisq")
Single term deletions

Model:
(Satellites > 0) ~ C + Weight + C:Weight
Df Deviance AIC LRT Pr(>Chi)
<none>
182198
C:Weight $3 \quad 1881986.89 \quad 0.076$

Quantitative Treatment of Ordinal Factors

Models with dummy variables for a factor treat that factor as qualitative (nominal), i.e., order is ignored.

To treat as quantitative, assign scores such as (1,2,3,4).

Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

Recall that color was originally coded with numerical scores $(1,2,3,4)$. Model:

$$
\operatorname{logit}(\pi)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}, \quad x_{1}: \text { weight, } \quad x_{2}: \text { color score }
$$

> crabs.fit5 <-

$$
\begin{aligned}
& \text { glm ((Satellites > 0) ~ Weight + Color, } \\
& \text { family=binomial, data=horseshoecrabs) }
\end{aligned}
$$

> summary(crabs.fit5)

Call:

```
glm(formula = (Satellites > 0) ~ Weight + Color, family = binomial
    data = horseshoecrabs)
```

Deviance Residuals:

Min	1Q	Median	3Q	Max
-2.160	-1.000	0.524	0.882	1.911

Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	-2.032	1.116	-1.82	0.069
Weight	1.653	0.382	4.32	$1.5 e-05$
Color	-0.514	0.223	-2.30	0.021

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 190.27 on 170 degrees of freedom
AIC: 196.3

Number of Fisher Scoring iterations: 4

Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

ML estimates and SEs are

$$
\begin{aligned}
& \hat{\alpha}=-2.03(1.12) \quad \hat{\beta}_{1}=1.65(0.38) \quad \hat{\beta}_{2}=-0.51(0.22) \\
& \operatorname{logit}(\hat{\pi})=-2.03+1.65 x_{1}-0.51 x_{2}
\end{aligned}
$$

$\hat{\pi} \downarrow$ as Color \uparrow, controlling for weight.
Controlling for weight, odds of having at least one satellite estimated to decrease by a factor of

$$
e^{-0.51}=0.60
$$

for each 1-category increase in shell darkness

Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

Does model treating color as nominal fit as well as model treating it as qualitative?
H_{0} : simpler (ordinal) model holds
H_{a} : more complex (nominal) model holds

$$
\begin{aligned}
\text { LR stat } & =-2\left(L_{0}-L_{1}\right) \\
& =\text { diff in deviances } \\
& =190.27-188.54=1.73, \quad \mathrm{df}=2
\end{aligned}
$$

Do not reject H_{0}. Simpler model appears to be adequate.
> anova(crabs.fit5, crabs.fit2, test="Chisq")
Analysis of Deviance Table

FL Death Penalty Revisited
 > dpflat

	DeathPenalty	
	Yes	No
Victim		
Whitefendant		
White	53	414
	Black	11
Black	37	
	White	0
	Black	4
		139

Modeling approach: take death penalty (Yes/No) as response, race of defendant and race of victim as explanatory variables.
> deathpenalty

> dpwide
Defendant Victim variable Yes No

1	White	White	Freq	53
2	414			
2	White	Black	Freq	0
	16			
4	Black	White	Freq	11
37				
4	Black	Black	Freq	4

> dp.fit1 <-

$$
\begin{aligned}
& \text { glm(cbind(Yes,No) ~ Defendant + Victim, family=binomial, } \\
& \text { data=dpwide) }
\end{aligned}
$$

> summary(dp.fit1)

Call:

```
glm(formula = cbind(Yes, No) ~ Defendant + Victim, family = binomi
    data = dpwide)
```

Deviance Residuals:

1	2	3	4
0.0266	-0.6054	-0.0623	0.0938

Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	-2.059	0.146	-14.12	$<2 \mathrm{e}-16$
DefendantBlack	0.868	0.367	2.36	0.018
VictimBlack	-2.404	0.601	-4.00	$6.2 \mathrm{e}-05$

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 22.26591 on 3 degrees of freedom Residual deviance: 0.37984 on 1 degrees of freedom AIC: 19.3

Number of Fisher Scoring iterations: 4

FL Death Penalty Revisited

$$
\begin{aligned}
& \pi=\operatorname{Pr}(\mathrm{Y}=\text { yes }) \text { death penalty } \\
& v=\left\{\begin{array}{ll}
1, & \text { victim black } \\
0, & \text { victim white }
\end{array} \quad \mathrm{d}= \begin{cases}1, & \text { defendant black } \\
0, & \text { defendant white }\end{cases} \right.
\end{aligned}
$$

Model:

$$
\operatorname{logit}(\pi)=\alpha+\beta_{1} d+\beta_{2} v
$$

ML fit:

$$
\operatorname{logit}(\hat{\pi})=-2.06+0.87 d-2.40 v
$$

Controlling for race of victim, estimated odds of death penalty for black defendant is $e^{0.87}=2.38$ times estimated odd for white def. $95 \% \mathrm{Cl}$ for odds-ratio is

$$
e^{0.868 \pm 1.96(0.367)}=\left(e^{0.148}, e^{1.59}\right)=(1.16,4.89)
$$

Remarks

- No interaction term means estimated odds ratio between Y and
- d same at each level of $v\left(e^{0.868}=2.38\right)$
- v same at each level of $d\left(e^{-2.40}=0.09\right)$

For white vic vs black vic: $\mathrm{e}^{2.40}=\frac{1}{0.09}=11.1$
Homogeneous association: odds ratio does not depend on level of other explanatory variable.

- Test $H_{0}: \beta_{1}=0(Y$ cond. indep. of d given $v)$ vs $H_{a}: \beta_{1} \neq 0$

$$
z=\frac{\hat{\beta}}{S E}=\frac{0.868}{0.367}=2.36 \quad \text { p-value }=0.018
$$

Evidence that controlling for race of victim, death penalty more likely for black defendants than white.

$$
\text { LR stat }=5.39-0.38=5.01 \quad \mathrm{df}=1 \quad \mathrm{p} \text {-value }=0.025
$$

> drop1(dp.fit1, test="Chisq")
Single term deletions
Model:
cbind(Yes, No) ~ Defendant + Victim Df Deviance AIC LRT Pr(>Chi)
<none> 0.3819 .3
$\begin{array}{llllll}\text { Defendant } 1 & 5.39 & 22.3 & 5.01 & 0.025\end{array}$
Victim $\quad 1 \quad 20.73 \quad 37.6 \quad 20.35 \quad 6.4 \mathrm{e}-06$
> dp.fit2 <- update(dp.fit1, . ~ Victim)
> deviance(dp.fit2)
[1] 5.394
> df.residual(dp.fit2)
[1] 2

Multi-Center Trials

A common application for logistic regression on multiple 2×2 tables is multi-center clinical trials:

$$
\operatorname{logit}[\operatorname{Pr}(Y=1)]=\alpha+\beta_{2} c_{2}+\cdots+\beta_{K} c_{k}+\beta x
$$

Assumes odds ratio e^{β} is the same for each center.

A model like this is commonly expressed in the form

$$
\operatorname{logit}[\operatorname{Pr}(Y=1)]=\alpha+\beta_{i}^{c}+\beta x
$$

β_{i}^{c} is effect for center i (relative to first center).
To test $\mathrm{H}_{0}: \beta=0$ (no treatment effect) for several 2×2 tables, could use

- likelihood-ratio test
- Wald test
- Cochran-Mantel-Haenszel test (p. 114)
- generalization of Fisher's exact test (pp. 158-159) (useful for small samples)

Exam 1 Review: Binomial Distribution

- Recognize.
- Compute probabilities, mean, sd.
- Wald test and CI for a single proportion.
- Score test and Cl for a single proportion.

Exam 1 Review: Likelihood

- What is the likelihood function?
- What is MLE?

Exam 1 Review: Contingency Tables

- Joint, marginal, and conditional distributions.
- INDEPENDENCE.
- Sensitivity/specificity.
- Probability and ODDS.

Exam 1 Review: 2×2 Tables

- Measures of dependence:

D Diff in proportions: $\pi_{1}-\pi_{2}$
> Relative risk: $\frac{\pi_{1}}{\pi_{2}}$

- Odds ratio: $\theta=\frac{\pi_{1} /\left(1-\pi_{1}\right)}{\pi_{2} /\left(1-\pi_{2}\right)}$
- When are odds ratio and relative risk similar?
- Retrospective study: can estimate θ, not others.
- Cls for $\pi_{1}-\pi_{2}$ and θ.

Exam 1 Review: Testing Independence in $\mathrm{I} \times \mathrm{J}$ Tables I

- Estimated expected frequencies.
- Pearson's chi-squared statistics: X^{2}
- Likelihood-ratio statistic: G^{2}
$\vee \mathrm{df}=(\mathrm{I}-1)(\mathrm{J}-1)$
- Chi-square dist. has $\mu=\mathrm{df}$ and $\sigma=\sqrt{2 \mathrm{df}}$.

Exam 1 Review: Testing Independence in I $\times \mathrm{J}$ Tables II

- Examining sources of dependence
- Adjusted residuals (analyze dependence)
- Should be approx. $N(0,1)$ if all expected freqs $\geqslant 5$.
- If so, then |adj resid| $\geqslant 2$ (or 3 in big tables) meaningful.
- Partitioning chi-square

With a correct partition

- G^{2} stats add up (X^{2} approximately so)
- df's add up to total df

Exam 1 Review: Fisher's Exact Test

- Test of independence $(\theta=1)$ in 2×2 tables.
- Conditions on row and column totals (i.e., treats them as fixed).
- Dist. of n_{11} under independence is hypergeometric.
- Expected value is $\frac{n_{1+} n_{+1}}{n}$
- Large values of n_{11} suggest $\theta>1$; small values suggest $\theta<1$.
- Can be extended to I $\times \mathrm{J}$ tables.

Exam 1 Review: Three-Way Contingency Tables

- Three variables: X, Y, Z
- Partial tables
- Hold Z fixed
- Conditional odds ratios
- Simpson's paradox
- Conditional independence: X and Y indep. in each partial table.

Exam 1 Review: Generalized Linear Models I

- Random component: form of distribution for Y
- Systematic component

$$
\underbrace{g(\mu)}_{\text {link }}=\underbrace{\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}}_{\text {linear predictor }}
$$

- Common link functions

Identity: $\mathrm{g}(\mu)=\mu$

$$
\begin{aligned}
\text { Log: } g(\mu) & =\log (\mu) \\
\text { Logit: } g(\mu) & =\log \left(\frac{\mu}{1-\mu}\right)
\end{aligned}
$$

Exam 1 Review: Generalized Linear Models II

- Compute MLEs with iterative numerical algorithm.
- Test hypotheses about parameters using Wald or LR tests.
- Cls also based on Wald or LR tests.
- Special case: ordinary linear regression
- random component: Y is normally distributed
> link: identity link

Exam 1 Review: GLMs for Binary Data I

- Ordinary linear model inappropriate for binary data
- Binary response not normally distributed
- $\operatorname{Var}(\mathrm{Y})$ depends on $\pi(x)$ so least squares not optimal
- Identity link may give estimated probabilities that are negative or greater than one.
- Linear probability model
- Binomial random component with identity link
- Advantage of identity link: easy interpretation of β
- Disadvantage of identity link: may give estimated probabilities that are negative or greater than one

Exam 1 Review: GLMs for Binary Data II

- Logistic regression model
- Binomial random component with logit link
- Logit link respects bounds on probabilities: must be between 0 and 1
- Interpret β in terms of odds and odds ratios.

Exam 1 Review: GLMs for Count Data I

- Poisson log-linear model
- Random component: Poisson distribution
- Link: log
- In simple Poisson log-linear regression model

$$
\log \mu=\alpha+\beta x
$$

the mean is multiplied by a factor of e^{β} for each 1 -unit increase in χ.

Exam 1 Review: GLMs for Count Data II

- Often have different bases for counts: need to model rate. With log link, this leads to an offset.

If t is base for count Y, systematic component is

$$
\log \left(\frac{\mu}{t}\right)=\alpha+\beta x \Longrightarrow \log (\mu)=\underbrace{\log (t)}_{\text {offset }}+\alpha+\beta x
$$

- Overdispersion is common with count data

Poisson random component has $\operatorname{Var}(Y)=\mu$.
Often have $\operatorname{Var}(\mathrm{Y})>\mu$ due to subject heterogeneity or other source(s) of unexplained variation.

- One way to address overdispersion: use negative binomial distribution as random component instead of Poisson.

Exam 1 Review: Simple Logistic Regression Model

- Binomial GLM with logit link and a single numerical explan. variable

$$
\begin{aligned}
& \log \left(\frac{\pi}{1-\pi}\right)=\alpha+\beta x \quad \text { i.e. } \quad \pi=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}} \\
& \pi=\text { prob. of "success" } \quad \frac{\pi}{1-\pi}=\text { odds of success }
\end{aligned}
$$

- odds of success multiplied by e^{β} for each 1 -unit increase in x. Multiplied by $e^{\beta \Delta x}$ if x changed by amount Δx.
- $\pi=1 / 2$ when $x=-\alpha / \beta$.
- Rate of change (slope) of π at a fixed point x is $\beta \pi(x)[1-\pi(x)]$. Steepest at $x=-\alpha / \beta$ where $\pi=1 / 2$ and slope $=\beta / 4$. Flattest when $\pi(x)$ close to 0 or 1 .
$\frac{1}{|\beta|} \approx$ dist. between x values with $\pi=0.5$ and $\pi=0.75$ (or 0.25)

Exam 1 Review: Inference in Simple Logistic Regression I

- Inference about β using Wald and LR tests and Cls. LR methods preferred.
- Wald test and CI have usual form:

Test stat: $\quad z=\frac{\hat{\beta}-\beta_{0}}{S E}$
CI: $\hat{\beta} \pm z_{\alpha / 2}$ SE

- CI for e^{β} : first compute $\mathrm{CI}(\mathrm{L}, \mathrm{U})$ for β, then take $\left(e^{\mathrm{L}}, e^{\mathrm{U}}\right)$.

Exam 1 Review: Inference in Simple Logistic Regression II

- LR test of $\mathrm{H}_{0}: \beta=0$:

LR test statistic $=-2\left[L_{0}-L_{1}\right]$
$=$ deviance $_{0}-$ deviance $_{1}$
df $=1$
$\mathrm{L}_{0}=$ log-likelihood maximized over α with $\beta=0$
$\mathrm{L}_{1}=$ log-likelihood maximized over α and β
$=$ log-likelihood at MLEs $\hat{\alpha}, \hat{\beta}$
deviance ${ }_{0}=$ "null deviance" in R
deviance $_{1}=$ "residual deviance" in R

Exam 1 Review: Multiple Logistic Regression

- Logistic regression with multiple explanatory variables

$$
\log \left(\frac{\pi}{1-\pi}\right)=\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}
$$

i.e.

$$
\pi=\frac{\exp \left(\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}\right)}{1+\exp \left(\alpha+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}\right)}
$$

- $\beta_{i}=$ partial effect of x_{i} controlling for other variables in model
$e^{\beta_{i}}=$ cond. odds ratio at $x_{i}+1$ vs at x_{i} keeping other x^{\prime} 's fixed $=$ multi. effect on odds of 1 -unit incr. in $x_{i}, w /$ other x^{\prime} 's fixed
- Model may include dummies for qualitative explan. vars.
- If x_{1} is the dummy for a 2-level factor, then no interaction with other explan. vars implies homogeneous assoc: odds ratio between Y and x_{1} is the same ($\left.e^{\beta_{1}}\right)$ at any fixed level of other explan. vars.

Exam 1 Review: Inference for Multiple Logistic Regression

- Usual Wald tests and CIs for individual $\beta_{j} s$
- LR test to compare reduced model M_{0} to full model M_{1} $H_{0}: M_{0}$ holds, where $M_{0} \subset M_{1}$

LR test statistic $=-2\left[L_{0}-L_{1}\right]$
$=$ deviance $_{0}-$ deviance $_{1}$
df $=$ num. free params in $M_{1}-$ num. free params in M_{0}
$=$ residual df for $M_{0}-$ residual df for M_{1}
$\mathrm{L}_{0}=$ maximized log-likelihood for M_{0}
$L_{1}=$ maximized log-likelihood for M_{1}
deviance ${ }_{0}=($ residual $)$ deviance for M_{0}
deviance $_{1}=($ residual $)$ deviance for M_{1}

Exam 1: Time and Place

Tuesday, Feb 21, 2012
8:30 a.m. - 9:25 a.m.
Griffin-Floyd Hall (FLO)
Room 100

Ch 5: Building Logistic Regression Models

- Model selection
- Model checking
- Problems w/ sparse categorical data (estimators may be infinite)

5.1 Strategies in Model Selection

Horseshoe Crab Study

$\mathrm{Y}=$ whether female crab has satellites $(1=$ yes, $0=$ No $)$.
Explanatory variables:

- Weight
- Width
- Color (ML, M, MD, D) w/ dummy vars $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$
\downarrow Spine condition (3 categories) w/ dummy vars s_{1}, s_{2}
> horseshoecrabs <-
transform(horseshoecrabs,

$$
\begin{aligned}
& C=\text { as.factor(Color), } \\
& S=\text { as.factor(Spine)) }
\end{aligned}
$$

> options(contrasts=c("contr.SAS","contr.poly"))
> crabs.fitall <-
glm((Satellites > 0) ~ C + S + Weight + Width, family=binomial, data=horseshoecrabs)
> summary(crabs.fitall)

Call:

```
glm(formula = (Satellites > 0) ~ C + S + Weight + Width, fami
data = horseshoecrabs)
```

Deviance Residuals:

Min	1Q	Median	3Q	Max
-2.198	-0.942	0.485	0.849	2.120

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	-9.273	3.838	-2.42	0.0157
C1	1.609	0.936	1.72	0.0855
C2	1.506	0.567	2.66	0.0079
C3	1.120	0.593	1.89	0.0591
S1	-0.400	0.503	-0.80	0.4259
S2	-0.496	0.629	-0.79	0.4302
Weight	0.826	0.704	1.17	0.2407
Width	0.263	0.195	1.35	0.1779

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 185.20 on 165 degrees of freedom AIC: 201.2
Number of Fisher Scoring iterations: 4

Horseshoe Crab Study

Consider model for crabs:

$$
\begin{aligned}
& \operatorname{logit}[\operatorname{Pr}(Y=1)] \\
& \quad=\alpha+\beta_{1} c_{1}+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} s_{1}+\beta_{5} s_{2}+\beta_{6} \text { weight }+\beta_{7} \text { width }
\end{aligned}
$$

LR test of $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{7}=0$ has test statistic

$$
\begin{aligned}
& -2\left(L_{0}-L_{1}\right)=\text { difference of deviances }=225.8-185.2=40.6 \\
& \text { df }=7 \quad \text { p-value }<0.0001
\end{aligned}
$$

Strong evidence at least one predictor assoc. w/ presence of satellites.
But look back at Wald tests for partial effects of weight and width.
Or better, look at LR tests of all partial effects (next slide).
> drop1(crabs.fitall, test="Chisq")
Single term deletions
Model:
(Satellites > 0) ~ C + S + Weight + Width Df Deviance AIC LRT Pr(>Chi)
<none>
185201

C	3	193	203	7.60	0.055
S	2	186	198	1.01	0.604
Weight	1	187	201	1.41	0.235
Width	1	187	201	1.80	0.180

Multicollinearity

Multicollinearity (strong correlations among predictors) plays havoc with GLMs just as it does with LMs.
E.g., Corr(width, weight) $=0.89$.

Is partial effect of either one relevant? Sufficient to pick one of these for a model.
> attach(horseshoecrabs)
> cor(Weight, Width)
[1] 0.88687
> plot(Width, Weight)
> detach(horseshoecrabs)

Backward Elimination

- Use $\mathrm{W}=$ width, $\mathrm{C}=$ color, $\mathrm{S}=$ spine as predictors.
- Start with complex model, including all interactions, say.
- Drop "least significant" (i.e., largest p-value) variable among highest-order terms.
- Refit model.
- Continue until all variables left are "significant".

Note: If testing many interactions, simpler and possibly better to begin by testing all at one time as on next slide.
> crabs.fit1 <-

$$
\begin{aligned}
& \text { glm(}(\text { Satellites }>0) \sim \mathrm{C} * \mathrm{~S} * \text { Width, } \\
& \text { family=binomial, data=horseshoecrabs) }
\end{aligned}
$$

> crabs.fit2 <- update(crabs.fit1, . ~ C + S + Width)
> anova(crabs.fit2, crabs.fit1, test="Chisq")
Analysis of Deviance Table

Model 1:	$($ Satellites $>0)$	$\sim \mathrm{C}+\mathrm{S}+$ Width		
Model 2:	(Satellites $>0)$	$\sim \mathrm{C} * \mathrm{~S} *$ Width		
Resid.	Df Resid. Dev Df	Deviance $\operatorname{Pr}(>$ Chi)		
1	166	187		
2	152	170	14	16.2

Horseshoe Crabs: Backward Elimination

H_{0} : Model $\mathrm{C}+\mathrm{S}+\mathrm{W}$ holds (has 3 parameters for C , 2 for $\mathrm{S}, 1$ for W)
H_{a} : Model $\mathrm{C} * \mathrm{~S} * \mathrm{~W}$ holds, where

$$
\begin{aligned}
& C * S * W= \\
& \quad C+S+W+(C \times S)+(C \times W)+(S \times W)+(C \times S \times W)
\end{aligned}
$$

LR stat $=$ diff. in deviances $=186.6-170.4=16.2$
$\mathrm{df}=166-152=14$

$$
p \text {-value }=0.30
$$

Simpler model $\mathrm{C}+\mathrm{S}+\mathrm{W}$ appears to be adequate.

Remark

$\mathrm{df}=14$ on previous slide is unexpected. Model $\mathrm{C} * \mathrm{~S} * \mathrm{~W}$ has $3 \times 2=\underline{6}$ parameters for $\mathrm{C} \times \mathrm{S}$ interaction,
$3 \times 1=3$ for $C \times W$,
$2 \times 1=\underline{2}$ for $S \times W$, and
$3 \times 2 \times 1=\underline{6}$ for $\mathrm{C} \times \mathrm{S} \times \mathrm{W}$,
so $6+3+2+6=17$ more parameters than model $\mathrm{C}+\mathrm{S}+\mathrm{W}$. However, 3 combinations of C and S have only one obs. each, so 3 of the $\mathrm{C} \times \mathrm{S} \times \mathrm{W}$ interaction coef.'s cannot be estimated.
> with(horseshoecrabs, table(C,S))

S			
C	1	2	3
1	9	2	1
2	24	8	3
3	3	4	
		1	

Remark

In this example, we end up with the same model if we eliminate higher order interactions 1 at a time. Try the following sequence of commands to see this.
> drop1(crabs.fit1, test="Chisq")
> crabs.fit1a <-
update(crabs.fit1, . ~ . - C:S:Width)
> drop1(crabs.fit1a, test="Chisq")
> crabs.fit1b <- update(crabs.fit1a, . ~ . - S:Width)
> drop1(crabs.fit1b, test="Chisq")
> crabs.fit1c <- update(crabs.fit1b, . ~ . - C:Width)
> drop1(crabs.fit1c, test="Chisq")

Horseshoe Crabs: Backward Elimination (ctd)

At next stage, S can be dropped from model $C+S+W$:
diff. in deviances $=187.46-186.61=0.85, \quad d f=2$
> drop1(crabs.fit2, test="Chisq")
Single term deletions

Model:

	Df Deviance		AIC	LRT Pr (>Chi)	
<none>		187	201		
C	3	194	202	7.81	0.05
S	2	188	198	0.85	0.66
Wi		209		22.2	e-0

> \#\# crabs.fit3 <- update(crabs.fit2, . ~ . - S)
> crabs.fit3 <- update(crabs.fit2, . ~ C + Width)
> deviance(crabs.fit3)

[1] 187.46

> deviance(crabs.fit2)
[1] 186.61
> anova(crabs.fit3, crabs.fit2, test="Chisq")
Analysis of Deviance Table

Model 1:	(Satellites $>0)$	$\sim C+$ Width		
Model 2:	$($ Satellites $>0)$	$\sim \mathrm{C}+\mathrm{S}+$ Width		
Resid.	Df Resid.	Dev	Df	Deviance $\operatorname{Pr}(>$ Chi)
1	168	188		
2	166	187	2	0.845

> drop1(crabs.fit3, test="Chisq")
Single term deletions

Model:

Df Deviance AIC LRT Pr(>Chi)
<none> 188198

C	3	194	198	7.0	0.072	
Width	1		212	220	24.6	$7 e-07$

> summary(crabs.fit3)

Call:

```
glm(formula = (Satellites > 0) ~ C + Width, family = binomial
    data = horseshoecrabs)
```

Deviance Residuals:

Min	1Q	Median	3Q	Max
-2.112	-0.985	0.524	0.851	2.141

Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	-12.715	2.762	-4.60	$4.1 \mathrm{e}-06$
C1	1.330	0.853	1.56	0.119
C2	1.402	0.548	2.56	0.011
C3	1.106	0.592	1.87	0.062
Width	0.468	0.106	4.43	$9.3 \mathrm{e}-06$

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 187.46 on 168 degrees of freedom AIC: 197.5

Number of Fisher Scoring iterations: 4

Horseshoe Crabs: Backward Elimination (ctd)

Results in model fit

$$
\operatorname{logit}(\hat{\pi})=-12.7+1.3 c_{1}+1.4 c_{2}+1.1 c_{3}+0.47 \text { width }
$$

Forcing $\beta_{1}=\beta_{2}=\beta_{3}$ gives
$\operatorname{logit}(\hat{\pi})=-13.0+1.3 c+0.48$ width
where

$$
c= \begin{cases}1, & \text { if color ML, M, MD } \\ 0, & \text { if color } \mathrm{D}\end{cases}
$$

> crabs.fit4 <- update(crabs.fit3, . ~ I(C == "4") + Width)
> anova(crabs.fit4, crabs.fit3, test="Chisq")
Analysis of Deviance Table

> summary(crabs.fit4)

Call:

```
glm(formula = (Satellites > 0) ~ I(C == "4") + Width, family
    data = horseshoecrabs)
```

Deviance Residuals:

Min	1Q	Median	3Q	Max
-2.082	-0.993	0.527	0.861	2.155

Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|\mathrm{z}\|)$			
(Intercept)	-12.980	2.727	-4.76	$1.9 \mathrm{e}-06$
I(C == "4")FALSE	1.301	0.526	2.47	0.013
Width	0.478	0.104	4.59	$4.4 \mathrm{e}-06$

(Dispersion parameter for binomial family taken to be 1)

Horseshoe Crabs Study

Conclude:

- Controlling for width, estimated odds of satellite for nondark crabs equal $e^{1.3}=3.7$ times est'd odds for dark crabs.

$$
95 \% \mathrm{CI}: \mathrm{e}^{1.301 \pm 1.96(0.526)}=\left(e^{0.270}, e^{2.33}\right)=(1.3,10.3)
$$

- Given color (nondark or dark), est'd odds of satellite multiplied by $e^{0.478}=1.6$ for each 1 cm increase in width.

$$
95 \% \mathrm{Cl}: \mathrm{e}^{0.478 \pm 1.96(0.104)}=\left(e^{0.274}, e^{0.682}\right)=(1.3,2.0)
$$

Criteria for Selecting a Model I

- Use theory, other research as guide.
- Parsimony (simplicity) is good.
- Can use a model selection criterion to choose among models. Most popular is Akaiki information criterion (AIC).

Choose model with minimum AIC where

$$
\text { AIC }=-2 \mathrm{~L}+2 \text { (number of model parameters) }
$$

with $\mathrm{L}=$ log-likelihood.

- For exploratory purposes, can use automated procedure such as backward elimination, but not generally recommended.

R function step() will do stepwise selection procedures (forward, backward, or both).

Criteria for Selecting a Model II

- One published simulation study suggests $\geqslant 10$ outcomes of each type (S or F) per "predictor" (count dummy variables for factors).

Example: $n=1000, \quad(Y=1) 30$ times, $\quad(Y=0) 970$ times
Model should contain $\leqslant \frac{30}{10}=3$ predictors.
Example: $n=173$ crabs, $(Y=1) 111$ crabs, $(Y=0) 62$ crabs

$$
\text { Use } \leqslant \frac{62}{10} \approx 6 \text { predictors. }
$$

- Can further check fit with residuals for grouped data, influence measures, cross validation.

Summarizing Predictive Power

A Correlation

For binary Y , can summarize predictive power with sample correlation of Y and $\hat{\pi}$.

Model	Correlation
color	0.285
width	0.402
color + width	0.452
dark + width	0.447

> crabs.color <- glm((Satellites > 0) ~ C, family=binomial, data=horseshoecrabs)
> crabs.width <- update(crabs.color, . ~ Width)
> crabs.color.width <- update(crabs.color, . ~ C + Width)
> crabs.dark.width <-
update(crabs.color, . ~ I (C == "4") + Width)
> y <- as.numeric(horseshoecrabs\$Satellites > 0)
> pihat <- predict(crabs.color, type="response")
> cor (y,pihat)
[1] 0.28526
> pihat <- predict(crabs.width, type="response")
> $\operatorname{cor}(\mathrm{y}, \mathrm{pihat})$
[1] 0.40198
> pihat <- predict(crabs.color.width, type="response")
> cor (y,pihat)
[1] 0.45221
> pihat <- predict(crabs.dark.width, type="response")
> cor (y,pihat)
[1] 0.44697

Summarizing Predictive Power

Classification Tables
Predict $\hat{y}=1$ if $\hat{\pi}>0.50$ and $\hat{y}=0$ if $\hat{\pi}<0.50$.
Horseshoe Crabs with Width and Color as Predictors

	Predicted		
Actual	$\hat{\mathrm{y}}=1$	$\hat{\mathrm{y}}=0$	Total
$\mathrm{y}=1$	96	15	111
$\mathrm{y}=0$	31	31	62

Sensitivity $=\operatorname{Pr}(\widehat{Y}=1 \mid Y=1) \approx \frac{96}{111}=0.86$
Specificity $=\operatorname{Pr}(\widehat{\mathrm{Y}}=0 \mid \mathrm{Y}=0) \approx \frac{31}{62}=0.50$
$\operatorname{Pr}($ correct classification $) \approx \frac{96+31}{173}=0.73$
> pihat <- predict(crabs.color.width, type="response")
> yhat <- as.numeric(pihat > 0.50)
> y <- as.numeric(horseshoecrabs\$Satellites > 0)
> table(y, yhat)
yhat
$\begin{array}{lrr}\mathrm{y} & & 0 \\ 0 & 1 \\ 0 & 31 & 31 \\ 1 & 15 & 96\end{array}$
> addmargins(table(y, yhat), 2)
yhat

y		0	1	Sum
0	31	31	62	
1	15	96	111	

Remark

Table 5.3 in text actually produced by (approximate) leave-one-out cross-validation, which gives more realistic estimates. For $i=1, \ldots, n$:

1. Fit the model to the data leaving out ith obs.
2. Use fitted model and x_{i} to compute $\hat{\pi}_{(i)}$.
3. Predict $\hat{y}_{i}=1$ if $\hat{\pi}_{(i)}>0.50$ and $\hat{y}_{i}=0$ if $\hat{\pi}_{(i)}<0.50$.

	Predicted		
Actual	$\hat{\mathrm{y}}=1$	$\hat{\mathrm{y}}=0$	Total
$\mathrm{y}=1$	94	17	111
$\mathrm{y}=0$	34	28	62

Sensitivity $=\operatorname{Pr}(\widehat{Y}=1 \mid Y=1) \approx \frac{94}{111}=0.85$
Specificity $=\operatorname{Pr}(\widehat{\mathrm{Y}}=0 \mid \mathrm{Y}=0) \approx \frac{28}{62}=0.45$
$\operatorname{Pr}($ correct classification $) \approx \frac{94+28}{173}=0.705$

```
> pihat <- vector(length=173)
> for (i in 1:173) {
    pihat[i] <-
                predict(update(crabs.color.width, subset=-i),
                newdata=horseshoecrabs[i,], type="response")
    }
> yhat <- as.numeric(pihat > 0.50)
> y <- as.numeric(horseshoecrabs$Satellites > 0)
> confusion <- table(y, yhat)
> confusion
    yhat
\begin{tabular}{lrrr} 
y & & 0 & 1 \\
& 0 & 28 & 34 \\
& 1 & 17 & 94
\end{tabular}
```

> prop.table(confusion, 1)
yhat

\left.| y | | 0 |
| :--- | ---: | ---: |
| | 0 | 0.45161 |$\right)$

[1] 0.7052
> yhat <- as.numeric(pihat > 0.64)
> table(y, yhat)
yhat
$\begin{array}{lrrr}\text { y } & 0 & 1 \\ 0 & 42 & 20 \\ & 1 & 37 & 74\end{array}$

Could use cut-offs other than $\pi_{0}=0.5$. E.g., for the crabs data, $\pi_{0}=\frac{111}{173}=0.64$ ($\hat{\pi}$ for intercept-only model).

	Predicted		
Actual	$\hat{\mathrm{y}}=1$	$\hat{\mathrm{y}}=0$	Total
$\mathrm{y}=1$	74	37	111
$\mathrm{y}=0$	20	42	62

Sensitivity $=\operatorname{Pr}(\widehat{Y}=1 \mid Y=1) \approx \frac{74}{111}=0.67$
Specificity $=\operatorname{Pr}(\widehat{Y}=0 \mid Y=0) \approx \frac{42}{62}=0.68$
$\operatorname{Pr}($ correct classification $) \approx \frac{74+42}{173}=0.67$

Note: As cutoff π_{0} increases, sensitivity decreases and specificity increases.

Receiver Operating Characteristic (ROC) Curve

The receiver operating characteristic (ROC) curve plots sensitivity against 1 - specificity as the cutoff π_{0} varies from 0 to 1 .

- The higher the sensitivity for a given specificity, the better, so a model with a higher ROC curve is preferred to one with a lower ROC curve.
- The area under the ROC curve is a measure of predictive power, called the concordance index, c.
- Models w/ bigger c have better predictive power.
- $c=1 / 2$ is no better than random guessing.
- If feasible, use cross-validation.

The slide after the next shows ROC curve for horseshoecrab data using color and width as predictors ($c=0.77$).
> library(epicalc)
> lroc(crabs.width, graph=FALSE)\$auc
[1] 0.74244
> lroc(crabs.color, graph=FALSE)\$auc
[1] 0.63862
> lroc(crabs.color.width, graph=FALSE)\$auc
[1] 0.77136
> lroc(crabs.dark.width, graph=FALSE)\$auc
[1] 0.77201
> lroc(crabs.color.width, grid=FALSE, title=TRUE)

Model Checking

Is the chosen model adequate?

- Goodness of fit test.

Note that tests using deviance G^{2} and Pearson's chi-square X^{2} are generally limited to "non-sparse" contingency tables.

- Check whether fit improves by adding other predictors or interactions between predictors.

LR statistic (change in deviance) is useful for comparing models even when G^{2} is not valid as an overall test of fit.

- Residuals.

Florida Death Penalty Data

$$
\begin{aligned}
& \operatorname{logit}(\hat{\pi})=-2.06+0.87 d-2.40 v \\
& \hat{\pi}=\frac{\exp \{-2.06+0.87 d-2.40 v\}}{1+\exp \{-2.06+0.87 d-2.40 v\}}
\end{aligned}
$$

E.g., for 467 cases with $\mathrm{d}=v=0: \hat{\pi}=\frac{e^{-2.06}}{1+e^{-2.06}}=0.113$.

Florida Death Penalty Data (ctd)

Fitted counts for 467 cases with $\mathrm{d}=v=0$:

$$
\text { "Yes": } 467 \times 0.113=52.8 \quad \text { "No": } 467 \times 0.887=414.2
$$

Corresponding observed counts are 53 "yes" and 414 "no".
Summarizing fit over 8 cells of table:

$$
\begin{aligned}
\mathrm{X}^{2} & =\sum \frac{(\text { observed }- \text { fitted })^{2}}{\text { fitted }}=0.20 \\
\mathrm{G}^{2} & =2 \sum(\text { observed }) \log \left(\frac{\text { observed }}{\text { fitted }}\right)=0.38=\text { deviance } \\
\text { df } & =\text { num. binomials }- \text { num. model params }=4-3=1
\end{aligned}
$$

For H_{0} : "model correctly specified", $\mathrm{G}^{2}=0.38$, df $=1, \mathrm{p}$-value $=0.54$. No evidence of lack of fit.
> formula(dp.fit1)
cbind(Yes, No) ~ Defendant + Victim
> deviance(dp.fit1)
[1] 0.37984
> df.residual(dp.fit1)
[1] 1
> pchisq(deviance(dp.fit1), 1, lower.tail=FALSE)
[1] 0.53769
> chisqstat(dp.fit1)
[1] 0.19779
> pchisq(chisqstat(dp.fit1), 1, lower.tail=FALSE)
[1] 0.65651

Remarks

- Model assumes lack of interaction between d and v in effects on Y (homogeneous association). Adding interaction term gives saturated model, so goodness-of-fit test in this example is a test of H_{0} : "no interaction". (Compare next slide to previous.)
- X^{2} usually recommended over G^{2} for testing goodness of fit.
- These tests only appropriate for grouped binary data with most ($\geqslant 80 \%$) fitted cell counts "large" (e.g., $\hat{\mu}_{i} \geqslant 5$).
- Questionable (?) in death penalty example, where $\hat{\mu}=0.18$ for ($v=\mathrm{bl}, \mathrm{d}=\mathrm{wh}, \mathrm{Y}=\mathrm{yes}$) and $\hat{\mu}=3.82$ for ($v=\mathrm{wh}, \mathrm{d}=\mathrm{bl}$, $\mathrm{Y}=\mathrm{yes}$).
- For continuous predictors or many predictors with small $\hat{\mu}_{i}$, distributions of X^{2} and G^{2} are not well approximated by χ^{2}. For better approx., can try grouping data before applying $\mathrm{X}^{2}, \mathrm{G}^{2}$.
- Hosmer-Lemeshow test forms groups using ranges of $\hat{\pi}$ values. Implemented in R packages LDdiag and MKmisc and perhaps others.
- Or can try to group predictor values (if only 1 or 2 predictors).
> dp.saturated <- update(dp.fit1, . ~ Defendant*Victim)
> anova(dp.fit1, dp.saturated, test="LRT")
Analysis of Deviance Table

Residuals for Logit Models

At setting i of explanatory variables, let
$y_{i}=$ number of successes
$n_{i}=$ number of trials (preferably "large")
$\hat{\pi}_{i}=$ estimated probability of success based on ML fit of model

Definition (Pearson residuals)
For a binomial GLM, the Pearson residuals are

$$
\left.e_{i}=\frac{y_{i}-n_{i} \hat{\pi}_{i}}{\sqrt{n_{i} \hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)}} \quad \quad \quad \text { note that } X^{2}=\sum_{i} e_{i}^{2}\right)
$$

\downarrow Dist. of e_{i} is approx. $N(0, v)$ when model holds (and n_{i} large), but $v<1$.

- Use R function residuals() with option type="pearson".

Definition (Standardized Pearson residual)

For a binomial GLM, the standardized Pearson residuals are

$$
r_{i}=\frac{y_{i}-n_{i} \hat{\pi}_{i}}{S E}=\frac{y_{i}-n_{i} \hat{\pi}_{i}}{\sqrt{n_{i} \hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)\left(1-h_{i}\right)}}=\frac{e_{i}}{\sqrt{1-h_{i}}}
$$

where h_{i} is the "leverage" of the i th obs.

- A.K.A. "adjusted" Pearson residual.
- r_{i} approx. $N(0,1)$ when model holds (and n_{i} large). $\left|r_{i}\right|>2$ or 3 (approx.) suggests lack of fit.
- R function rstandard() provides standardized deviance residuals by default. For standardized Pearson residuals specify type="pearson".

Example (Berkeley Graduate Admissions)

Data on p. 237 of text.
$\mathrm{Y}=$ admitted into grad school at UC Berkeley ($1=\mathrm{yes}, 0=\mathrm{no}$)
$\mathrm{G}=$ gender ($\mathrm{g}=1$ female, $\mathrm{g}=0$ male)
$\mathrm{D}=\operatorname{dept}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F})$

$$
d_{1}=\left\{\begin{array}{ll}
1, & \text { dept } B, \\
0, & \text { o/w, }
\end{array} \quad \ldots, \quad d_{5}= \begin{cases}1, & \text { dept } F, \\
0, & \text { o/w }\end{cases}\right.
$$

For dept. $A, d_{1}=\cdots=d_{5}=0$.

- Model

$$
\operatorname{logit}[\operatorname{Pr}(Y=1)]=\alpha+\beta_{1} d_{1}+\cdots+\beta_{5} d_{5}+\beta_{6} g
$$

seems to fit poorly $\left(G^{2}=20.2, X^{2}=18.8\right.$, df $\left.=5\right)$.
Apparently there is gender \times dept interaction.
> data(UCBAdmissions)
> is.table(UCBAdmissions)

[1] TRUE

> dimnames(UCBAdmissions)
\$Admit
[1] "Admitted" "Rejected"
\$Gender
[1] "Male" "Female"
\$Dept
[1] "A" "B" "C" "D" "E" "F"
> ftable(UCBAdmissions,
row.vars="Dept", col.vars=c("Gender","Admit"))
Gender Male Female

Admit Admitted Rejected Admitted Rejected

Dept				
A	512	313	89	19
B	353	207	17	8
C	120	205	202	391
D	138	279	131	244
E	53	138	94	299
F	22	351	24	317

Ignoring department is misleading (Simpson's paradox):
> margin.table(UCBAdmissions, 2:1)
Admit

Gender	Admitted	Rejected
Male	1198	1493
Female	557	1278

> round(prop.table(margin.table(UCBAdmissions, 2:1), 1), 3)
Admit
Gender Admitted Rejected
Male 0.4450 .555

Female $0.304 \quad 0.696$
> oddsratio(margin.table(UCBAdmissions, 2:1))
[1] 1.8411
> UCBdf <- as.data.frame(UCBAdmissions)
> head(UCBdf)

Admit			
Gender	Dept	Freq	
1 Admitted	Male	A	512
2 Rejected	Male	A	313
3 Admitted Female	A	89	
4 Rejected Female	A	19	
5 Admitted	Male	B	353
6 Rejected	Male	B	207

```
> library(reshape2)
> UCBw <-
    dcast(UCBdf, Gender + Dept ~ Admit, value.var="Freq")
> UCBw
```

	Gender	Dept	Admitted Rejected	
1	Male	A	512	313
2	Male	B	353	207
3	Male	C	120	205
4	Male	D	138	279
5	Male	E	53	138
6	Male	F	22	351
7	Female	A	89	19
8	Female	B	17	8
9	Female	C	202	391
10	Female	D	131	244
11	Female	E	94	299
12	Female	F	24	317

> options(contrasts=c("contr.treatment","contr.poly"))
> UCB.fit1 <- glm(cbind(Admitted,Rejected) ~ Dept + Gender, family=binomial, data=UCBw)
> summary (UCB.fit1)

```
Call:
```

```
glm(formula = cbind(Admitted, Rejected) ~ Dept + Gender, fami
```

glm(formula = cbind(Admitted, Rejected) ~ Dept + Gender, fami
data = UCBw)

```
    data = UCBw)
```

Deviance Residuals:

1	2	3	4	5	6
-1.249	-0.056	1.253	0.083	1.221	-0.208
7	8	9	10	11	12
3.719	0.271	-0.924	-0.086	-0.851	0.205

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	0.5821	0.0690	8.44	$<2 \mathrm{e}-16$
DeptB	-0.0434	0.1098	-0.40	0.69
DeptC	-1.2626	0.1066	-11.84	$<2 \mathrm{e}-16$
DeptD	-1.2946	0.1058	-12.23	$<2 \mathrm{e}-16$
DeptE	-1.7393	0.1261	-13.79	$<2 \mathrm{e}-16$
DeptF	-3.3065	0.1700	-19.45	$<2 \mathrm{e}-16$
GenderFemale	0.0999	0.0808	1.24	0.22

(Dispersion parameter for binomial family taken to be 1)

> Null deviance: 877.056 on 11 degrees of freedom Residual deviance: 20.204 on 5 degrees of freedom AIC: 103.1

Number of Fisher Scoring iterations: 4
> chisqstat(UCB.fit1)
[1] 18.824
> df.residual(UCB.fit1)
[1] 5
> pchisq(chisqstat(UCB.fit1), df.residual(UCB.fit1), lower.tail=FALSE)
[1] 0.0020725
> UCB.fit1.stdres <- rstandard(UCB.fit1, type="pearson")
> round(UCB.fit1.stdres, 2)

1	2	3	4	5	6	7	8	9
-4.03	-0.28	1.88	0.14	1.63	-0.30	4.03	0.28	-1.88
10	11	12						
-0.14	-1.63	0.30						

```
> cbind(UCBw, "stdres" = round(UCB.fit1.stdres, 2))
```

Gender Dept Admitted Rejected stdres

1	Male	A	512	313	-4.03
2	Male	B	353	207	-0.28
3	Male	C	120	205	1.88
4	Male	D	138	279	0.14
5	Male	E	53	138	1.63
6	Male	F	22	351	-0.30
7	Female	A	89	19	4.03
8	Female	B	17	8	0.28
9	Female	C	202	391	-1.88
10	Female	D	131	244	-0.14
11	Female	E	94	299	-1.63
12	Female	F	24	317	0.30

Example (Berkeley Admissions Ctd)

- Standardized resids suggest Dept. A as main source of lack of fit.
- Leaving out Dept. A, model with no interaction and no gender effect fits well $\left(G^{2}=2.68, X^{2}=2.69, d f=5\right)$.
- In Dept. A, sample odds-ratio of admission for females vs males is $\hat{\theta}=2.86$ (odds of admission higher for females).

Note: Alternative way to express model with qualitative factors is, e.g.,

$$
\operatorname{logit}[\operatorname{Pr}(Y=1)]=\alpha+\beta_{i}^{X}+\beta_{k}^{Z}
$$

where β_{i}^{X} is effect of classification in category i of X.
> UCB.fit2 <- glm(cbind(Admitted,Rejected) ~ Dept, family=binomial, data=UCBw, subset=(Dept != "A"))
> summary (UCB.fit2)

```
Call:
glm(formula = cbind(Admitted, Rejected) ~ Dept, family = binc
    data = UCBw, subset = (Dept != "A"))
```

Deviance Residuals:

2	3	4	5	6	8
-0.104	0.695	-0.376	0.812	-0.434	0.498
9	10	11	12		
-0.518	0.395	-0.575	0.442		

Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	0.5429	0.0858	6.33	$2.4 \mathrm{e}-10$
DeptC	-1.1586	0.1102	-10.52	$<2 \mathrm{e}-16$
DeptD	-1.2077	0.1139	-10.60	$<2 \mathrm{e}-16$
DeptE	-1.6324	0.1282	-12.73	$<2 \mathrm{e}-16$
DeptF	-3.2185	0.1749	-18.40	$<2 \mathrm{e}-16$

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 539.4581 on 9 degrees of freedom Residual deviance: 2.6815 on 5 degrees of freedom AIC: 69.92

Number of Fisher Scoring iterations: 3
> chisqstat(UCB.fit2)
[1] 2.6904
> UCB.fit3 <- update(UCB.fit2, . ~ Dept + Gender)
> anova(UCB.fit2, UCB.fit3, test="Chisq")
Analysis of Deviance Table

Model 1: cbind(Admitted, Rejected) ~ Dept
Model 2: cbind(Admitted, Rejected) ~ Dept + Gender
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
5
2.68

2
4
2.56
0.125
0.72
> UCBAdmissions[,,"A"]
Gender
Admit Male Female
Admitted 51289
Rejected 31319
> oddsratio(UCBAdmissions[,,"A"])
[1] 0.34921
> 1/oddsratio(UCBAdmissions[,,"A"])
[1] 2.8636

5.3 Effects of Sparse Data

Caution: Parameter estimates in logistic regression can be infinite.
Example:

\times	S	F
1	8	2
0	10	0

Model:

$$
\begin{aligned}
\log \left(\frac{\operatorname{Pr}(S)}{\operatorname{Pr}(F)}\right)=\alpha+\beta x \Longrightarrow e^{\hat{\beta}} & =\text { sample odds-ratio }=\frac{8 \times 0}{2 \times 10}=0 \\
\hat{\beta} & =\log (0)=-\infty
\end{aligned}
$$

Example: Text p. 155 for multi-center trial (5 ctrs, each w/ 2×2 table). Two centers had no successes under either treatment arm, so estimate of center effect for these two centers is $-\infty$.

Infinite estimates exist when x-values where $y=1$ can be "separated" from x-values where $y=0$.

Example: $y=0$ for $x<50$ and $y=1$ for $x>50$.

$$
\operatorname{logit}[\operatorname{Pr}(Y=1)]=\alpha+\beta x
$$

has $\hat{\beta}=\infty$ (roughly speaking).
Software may not realize this!

- SAS PROC GENMOD: $\hat{\beta}=3.84$, SE $=15601054$
- SAS PROC LOGISTIC gives warning.
- SPSS: $\hat{\beta}=1.83, \mathrm{SE}=674.8$
- $\mathrm{R}: \hat{\beta}=2.363, \mathrm{SE}=5805$, with warning.

Ch 6: Multicategory Logit Models

Y has J categories, J > 2.
Extensions of logistic regression for nominal and ordinal Y assume a multinomial distribution for Y .

In R, we will fit these models using the VGAM package.

6.1 Logit Models for Nominal Responses

Let $\pi_{j}=\operatorname{Pr}(Y=j), j=1,2, \ldots, J$.
Baseline-category logits are

$$
\log \left(\frac{\pi_{j}}{\pi_{\mathrm{J}}}\right), \quad j=1,2, \ldots, \mathrm{~J}-1
$$

Baseline-category logit model has form

$$
\log \left(\frac{\pi_{j}}{\pi_{\mathrm{J}}}\right)=\alpha_{j}+\beta_{j} x, \quad j=1,2, \ldots, J-1 .
$$

Separate set of parameters $\left(\alpha_{j}, \beta_{j}\right)$ for each logit.
In R, use vglm function w/ multinomial family from VGAM package.

Note:

- Category used as baseline (i.e., category J) is arbitrary and does not affect model fit.
Important because order of categories for nominal response is arbitrary.
- $e^{\beta_{j}}$ is the multiplicative effect of a 1-unit increase in x on the conditional odds of response j given that response is one of j or J . l.e., on the odds of j vs the baseline J.
- Could also use this model with ordinal response variables, but this would ignore information about ordering.

Example (Income and Job Satisfaction from 1991 GSS)

Income	Job Satisfaction			
	Dissat	Little	Moderate	Very
$<5 \mathrm{~K}$	2	4	13	3
$5 \mathrm{~K}-15 \mathrm{~K}$	2	6	22	4
$15 \mathrm{~K}-25 \mathrm{~K}$	0	1	15	8
$>25 \mathrm{~K}$	0	3	13	8

Using $x=$ income scores $(3,10,20,35)$, we fit the model

$$
\log \left(\frac{\pi_{j}}{\pi_{4}}\right)=\alpha_{j}+\beta_{j} x, \quad j=1,2,3,
$$

for $\mathrm{J}=4$ job satisfaction categories.
> data(jobsatisfaction)
> head(jobsatisfaction)

Gender				Income
1	F	3	1	1
2	F	10	1	2
3	F	20	1	0
4	F	35	1	0
5	M	3	1	1
6	M	10	1	0

> jobsatisfaction <-
transform(jobsatisfaction, JobSat = factor(JobSat,
labels = c("Diss","Little","Mod","Very"), ordered = TRUE))
> library(reshape2)
> jobsatw <- dcast(jobsatisfaction, Income ~ JobSat, sum, value.var = "Freq")
> jobsatw
Income Diss Little Mod Very

1	3	2	4	13	3
2	10	2	6	22	4
3	20	0	1	15	8
4	35	0	3	13	8

```
> library(VGAM)
> jobsat.fit1 <-
                                vglm(cbind(Diss,Little,Mod,Very) ~ Income,
                        family=multinomial, data=jobsatw)
> coef(jobsat.fit1)
\begin{tabular}{rrr} 
(Intercept):1 & (Intercept):2 & (Intercept):3 \\
0.429801 & 0.456275 & 1.703929 \\
Income:1 & Income:2 & Income:3 \\
-0.185368 & -0.054412 & -0.037385
\end{tabular}
```

> summary(jobsat.fit1)
Call:
vglm(formula = cbind(Diss, Little, Mod, Very) ~ Income, fami」 data = jobsatw)

Pearson Residuals:

	$\log (\mathrm{mu}[, 1] / \mathrm{mu}[, 4])$	$\log (\mathrm{mu}[, 2] / \mathrm{mu}[, 4])$
1	-0.311	0.129
2	0.700	0.554
3	-0.590	-1.428
4	-0.132	0.702
	$\log (\mathrm{mu}[, 3] / \mathrm{mu}[, 4])$	
1	-0.1597	
2	0.3435	
3	-0.3038	
4	0.0489	

Coefficients:

	Estimate Std. Error z value		
(Intercept):1	0.4298	0.9448	0.455
(Intercept):2	0.4563	0.6209	0.735
(Intercept):3	1.7039	0.4811	3.542
Income:1	-0.1854	0.1025	-1.808
Income:2	-0.0544	0.0311	-1.748
Income:3	-0.0374	0.0209	-1.790
Number of linear predictors: 3			
Names of linear predictors:			
log(mu[,1]/mu[,4]), log(mu[,2]/mu[,4]), log(mu[,3]/mu[,4])			
Dispersion Parameter for multinomial family: $\quad 1$			
Residual deviance: 4.658 on 6 degrees of freedom			

Log-likelihood: -16.954 on 6 degrees of freedom Number of iterations: 5

Example (Income and Job Satisfaction)

Prediction equations ($x=$ income score):

$$
\begin{aligned}
& \log \left(\frac{\hat{\pi}_{1}}{\hat{\pi}_{4}}\right)=0.430-0.185 x \\
& \log \left(\frac{\hat{\pi}_{2}}{\hat{\pi}_{4}}\right)=0.456-0.054 x \\
& \log \left(\frac{\hat{\pi}_{3}}{\hat{\pi}_{4}}\right)=1.704-0.037 x
\end{aligned}
$$

Note:

- For each logit, estimated odds of being in less satisfied category (vs very satisfied) decrease as $x=$ income increases.
- Estimated odds of being "very dissatisfied" vs "very satisfied" multiplied by $e^{-0.185}=0.83$ for each 1 K increase in income.
- For a 10K increase in income (e.g., from row 2 to row 3), estimated odds are multiplied by

$$
e^{(10)(-0.185)}=e^{-1.85}=0.16
$$

e.g., at $x=20$, the estimated odds of being "very dissatisfied" instead of "very satisfied" are just 0.16 times the corresponding odds at $x=10$.

- Model treats $Y=$ job satisfaction as qualitative (nominal), but Y is ordinal. (Later we will consider a model that treats Y as ordinal.)

Estimating Response Probabilities

Equivalent form of baseline-category logit model is

$$
\begin{aligned}
\pi_{j} & =\frac{e^{\alpha_{j}+\beta_{j} x}}{1+e^{\alpha_{1}+\beta_{1} x}+\cdots+e^{\alpha_{J-1}+\beta_{J-1} x}}, \quad j=1,2, \ldots, J-1, \\
\pi_{J} & =\frac{1}{1+e^{\alpha_{1}+\beta_{1} x}+\cdots+e^{\alpha_{J-1}+\beta_{J-1} x}} .
\end{aligned}
$$

Check that

$$
\frac{\pi_{j}}{\pi_{\mathrm{J}}}=\mathrm{e}^{\alpha_{j}+\beta_{j} x} \quad \Longrightarrow \quad \log \left(\frac{\pi_{j}}{\pi_{\mathrm{j}}}\right)=\alpha_{j}+\beta_{j} x
$$

and

$$
\sum_{j=1}^{\mathrm{J}} \pi_{j}=1
$$

Example (Job Satisfaction)

$$
\begin{aligned}
& \hat{\pi}_{1}=\frac{e^{0.430-0.185 x}}{1+e^{0.430-0.185 x}+e^{0.456-0.054 x}+e^{1.704-0.037 x}} \\
& \hat{\pi}_{2}=\frac{e^{0.456-0.054 x}}{1+e^{0.430-0.185 x}+e^{0.456-0.054 x}+e^{1.704-0.037 x}} \\
& \hat{\pi}_{3}=\frac{e^{1.704-0.037 x}}{1+e^{0.430-0.185 x}+e^{0.456-0.054 x}+e^{1.704-0.037 x}} \\
& \hat{\pi}_{4}=\frac{1}{1+e^{0.430-0.185 x}+e^{0.456-0.054 x}+e^{1.704-0.037 x}}
\end{aligned}
$$

E.g., at $x=35$, estimated probability of being "very satisfied" is

$$
\hat{\pi}_{4}=\frac{1}{1+e^{0.430-0.185(35)}+e^{0.456-0.054(35)}+e^{1.704-0.037(35)}}=0.367
$$

Similarly, $\hat{\pi}_{1}=0.001, \hat{\pi}_{2}=0.086, \hat{\pi}_{3}=0.545$. and

$$
\hat{\pi}_{1}+\hat{\pi}_{2}+\hat{\pi}_{3}+\hat{\pi}_{4}=1
$$

- MLEs determine estimated effects for all pairs of categories, e.g.,

$$
\begin{aligned}
\log \left(\frac{\hat{\pi}_{1}}{\hat{\pi}_{2}}\right) & =\log \left(\frac{\hat{\pi}_{1}}{\hat{\pi}_{4}}\right)-\log \left(\frac{\hat{\pi}_{2}}{\hat{\pi}_{4}}\right) \\
& =(0.430-0.185 x)-(0.456-0.054 x) \\
& =-0.026-0.131 x
\end{aligned}
$$

- Contingency table data, so can test goodness of fit.
(Residual) deviance is LR test statistic for comparing fitted model to saturated model.

Deviance $=4.66, \mathrm{df}=6, \mathrm{p}$-value $=0.59$ for H_{0} : "model holds with linear trends for income". No evidence against the model.

There are $3 \times 4=12$ logits to estimate (3 baseline category logits at each of 4 income levels), so the saturated model has12 parameters. The fitted model has 6 parameters, so

$$
\mathrm{df}=12-6=6 \text {. }
$$

- Inference uses usual methods
- Wald CI for β_{j} is $\hat{\beta}_{j} \pm z_{\alpha / 2}$ SE.
- Wald test of $H_{0}: \beta_{j}=0$ uses $z=\frac{\hat{\beta}_{j}}{S E}$ or $z^{2} \sim \chi_{1}^{2}$.
- For small \mathfrak{n}, better to use LR test and LR CI, if available.
- However, unlikely to be interested in a single coefficient, because even a single numerical x has $\mathrm{J}-1$ coefficients.

More common to compare nested models where some variable(s) are included/excluded. LR tests best for this.

Example (Job Satisfaction)

Overall "global" test of income effect

$$
H_{0}: \beta_{1}=\beta_{2}=\beta_{2}=0
$$

LR test obtained by fitting simpler intercept only model (implies job satisfaction independent of income) to get null deviance. LR test stat is difference in deviances. Df is difference in number of parameters, or equivalently, difference in (residual) df.

$$
\begin{aligned}
& \text { deviance }_{0}-\text { deviance }_{1}=13.47-4.66=8.81 \\
& \text { df }=6-3=9-6=3 \\
& \text { p-value }=0.032
\end{aligned}
$$

Evidence (p-value $<.05$) of dependence between job sat. and income.
Note that conclusion differs from that obtained with a simple chi-square test of independence (even using LR statistic $\mathrm{G}^{2}=13.47$, df $=9$, p-value $=0.1426)$. What is different here that made this possible?
> jobsat.fit2 <vglm(cbind(Diss,Little,Mod, Very) ~ 1, family=multinomial, data=jobsatw)
> deviance(jobsat.fit2)
[1] 13.467
> df.residual(jobsat.fit2)
[1] 9
> pchisq(deviance(jobsat.fit2) - deviance(jobsat.fit1), 3, lower.tail=FALSE)
[1] 0.031937
> summary(jobsat.fit2)

Call:
vglm(formula = cbind(Diss, Little, Mod, Very) ~ 1, family = data $=$ jobsatw)

Coefficients:

	Estimate Std. Error z value		
(Intercept):1	-1.749	0.542	-3.23
(Intercept):2	-0.496	0.339	-1.46
(Intercept):3	1.008	0.244	4.14

Number of linear predictors: 3
Names of linear predictors:
$\log (\mathrm{mu}[, 1] / \mathrm{mu}[, 4]), \log (\mathrm{mu}[, 2] / \mathrm{mu}[, 4]), \log (\mathrm{mu}[, 3] / \mathrm{mu}[, 4])$
Dispersion Parameter for multinomial family: 1
Residual deviance: 13.467 on 9 degrees of freedom
Log-likelihood: -21.359 on 9 degrees of freedom

6.2 Cumulative Logit Models for Ordinal Responses

The cumulative probabilities are

$$
\operatorname{Pr}(Y \leqslant j)=\pi_{1}+\cdots+\pi_{j}, \quad j=1,2, \ldots, J .
$$

The cumulative logits are

$$
\begin{aligned}
\operatorname{logit}[\operatorname{Pr}(Y \leqslant j)]= & \log \left(\frac{\operatorname{Pr}(Y \leqslant j)}{1-\operatorname{Pr}(Y \leqslant j)}\right)=\log \left(\frac{\operatorname{Pr}(Y \leqslant j)}{\operatorname{Pr}(Y>j)}\right) \\
& =\log \left(\frac{\pi_{1}+\cdots+\pi_{j}}{\pi_{j+1}+\cdots+\pi_{j}}\right), \quad j=1, \ldots, J-1 .
\end{aligned}
$$

Cumulative logit model has form

$$
\operatorname{logit}[\operatorname{Pr}(Y \leqslant j)]=\alpha_{j}+\beta x, \quad j=1, \ldots, J-1
$$

Note:

- separate intercept α_{j} for each cumulative logit
- same slope β for each cumulative logit
- $e^{\beta}=$ multiplicative effect of 1 -unit increase in x on odds that $(Y \leqslant j)$ (instead of $(Y>j)$).

$$
\begin{aligned}
\frac{\operatorname{odds}\left(Y \leqslant j \mid x_{2}\right)}{\operatorname{odds}\left(Y \leqslant j \mid x_{1}\right)} & =e^{\beta\left(x_{2}-x_{1}\right)} \\
& =e^{\beta} \quad \text { when } x_{2}=x_{1}+1 .
\end{aligned}
$$

Also called proportional odds model.

- In R, use vglm function w/ cumulative family from VGAM package.

Example (Income and Job Satisfaction from 1991 GSS)

Income	Job Satisfaction			
	Dissat	Little	Moderate	Very
$<5 \mathrm{~K}$	2	4	13	3
$5 \mathrm{~K}-15 \mathrm{~K}$	2	6	22	4
$15 \mathrm{~K}-25 \mathrm{~K}$	0	1	15	8
$>25 \mathrm{~K}$	0	3	13	8

Using $x=$ income scores (3, 10, 20, 35), cumulative logit model fit is

$$
\operatorname{logit}[\widehat{\operatorname{Pr}}(Y \leqslant j)]=\hat{\alpha}_{j}+\hat{\beta} x=\hat{\alpha}_{j}-0.0449 x, \quad j=1,2,3 .
$$

Odds of response at low end of job satisfaction scale decreases as income increases.

Contingency table data. Model fits well: deviance $=6.75$, df $=8$.
> jobsat.cl1 <-

```
vglm(cbind(Diss,Little,Mod,Very) ~ Income,
    family=cumulative(parallel=TRUE), data=jobsatw)
```

> summary(jobsat.cl1)

Call:
vglm(formula = cbind(Diss, Little, Mod, Very) ~ Income, fami] data $=$ jobsatw)

Pearson Residuals:

	$\operatorname{logit}(\mathrm{P}[\mathrm{Y}<=1])$	$\operatorname{logit}(\mathrm{P}[\mathrm{Y}<=2])$	$\operatorname{logit}(\mathrm{P}[\mathrm{Y}<=3])$
1	0.583	-0.0385	-0.178
2	0.300	0.2608	0.696
3	-0.675	-1.1793	-0.960
4	-0.782	1.1186	0.334

Coefficients:

	Estimate	Std. Error z value	
(Intercept):1	-2.5829	0.5584	-4.63
(Intercept):2	-0.8970	0.3550	-2.53
(Intercept):3	2.0751	0.4158	4.99
Income	-0.0449	0.0175	-2.56

Number of linear predictors: 3
Names of linear predictors:
$\operatorname{logit}(\mathrm{P}[\mathrm{Y}<=1]), \operatorname{logit}(\mathrm{P}[\mathrm{Y}<=2]), \operatorname{logit}(\mathrm{P}[\mathrm{Y}<=3])$
Dispersion Parameter for cumulative family:
Residual deviance: 6.749 on 8 degrees of freedom

Estimated odds of satisfaction below any given level multiplied by

$$
e^{\hat{\beta}}=e^{-0.0449}=0.96
$$

for each 1 K increase in income (but $x=3,10,20,35$).
For 10K increase in income, estimated odds multiplied by

$$
e^{10 \hat{\beta}}=e^{(10)(-0.0449)}=e^{-0.449}=0.64
$$

e.g., at \$20K income, estimated odds of satsifaction below any given level is 0.64 times the odds at $\$ 10 \mathrm{~K}$ income.

Remark

If reverse ordering of response, $\hat{\beta}$ changes sign but has same SE .
With very satisfied < moderately satisfied < little dissatisfied < very dissatisfied:

$$
\hat{\beta}=0.0449, \quad e^{\hat{\beta}}=1.046=1 / 0.96 .
$$

```
> jobsat.cl1r <-
    vglm(cbind(Very,Mod,Little,Diss) ~ Income,
    family=cumulative(parallel=TRUE), data=jobsatw)
> coef(jobsat.cl1r)
(Intercept):1 (Intercept):2 (Intercept):3
    -2.075060
    0.896979
    2.582873
        Income
    0.044859
```

To test $\mathrm{H}_{0}: \beta=0$ (job satisfaction indep. of income):

$$
\begin{aligned}
\text { Wald: } & z=\frac{\hat{\beta}-0}{S E}=\frac{-0.0449}{0.0175}=-2.56 \quad\left(z^{2}=6.57, \quad \text { df }=1\right) \\
& p \text {-value }=0.0105
\end{aligned}
$$

LR: \quad deviance ${ }_{0}-$ deviance $_{1}=13.47-6.75=6.72 \quad(\mathrm{df}=1)$ p-value $=0.0095$
> jobsat.cl0 <-

$$
\begin{aligned}
& \text { vglm(cbind(Diss, Little,Mod,Very) ~ 1, } \\
& \text { family=cumulative(parallel=TRUE), data=jobsatw) }
\end{aligned}
$$

> deviance(jobsat.cl0)
[1] 13.467
> deviance(jobsat.cl1)
[1] 6.7494
> pchisq(deviance(jobsat.cl0) - deviance(jobsat.cl1), 1, lower.tail=FALSE)
[1] 0.009545

Remark

Test based on cumlative logit (CL) model treats Y as ordinal, and yielded stronger evidence of association (p-value ≈ 0.01) than obtained when we treated:

- Y as nominal (BCL model): $\log \left(\frac{\pi_{j}}{\pi_{4}}\right)=\alpha_{j}+\beta_{j} \chi$.

Recall p-value $=0.032$ for LR test $(d f=3)$.

- X, Y both as nominal: Pearson's chi-square test of indep. had $X^{2}=11.5, \mathrm{df}=9, \mathrm{p}$-value $=0.24$.
Alternatively, $\mathrm{G}^{2}=13.47, \mathrm{p}$-value $=0.14$ (G^{2} here equivalent to LR test of all $\beta_{j}=0$ in BCL model $w /$ dummies for income).
The BCL and CL models also allow us to control for other variables, mix quantitative and qualitative predictors, interaction terms, etc.

Political Ideology and Party Affiliation (GSS)

		Ideology				
Gender	Party	VLib	SLib	Mod	SCon	VCon
Female	Dem	44	47	118	23	32
	Rep	18	28	86	39	48
Male	Dem	36	34	53	18	23
	Rep	12	18	62	45	51

$\mathrm{Y}=$ political ideology (very liberal, slightly liberal, moderate, slightly conservative, very conservative)

$$
\begin{aligned}
& x_{1}=\operatorname{gender}(1=M, 0=F) \\
& x_{2}=\operatorname{political} \text { party }(1=\text { Rep, } 0=\text { Dem })
\end{aligned}
$$

Cumulative Logit Model:

$$
\operatorname{logit}[\operatorname{Pr}(Y \leqslant j)]=\alpha_{j}+\beta_{1} x_{1}+\beta_{2} x_{2}, \quad j=1,2,3,4
$$

> data(ideology)
> head(ideology)
Party Gender Ideology Freq
1 Dem Female VLib 44

2 Rep Female VLib 18
3 Dem Male VLib 36
4 Rep Male VLib 12
5 Dem Female SLib 47
6 Rep Female SLib 28
> library(reshape2)
> ideow <- dcast(ideology, Gender + Party ~ Ideology, value_var="Freq")
> ideow
Gender Party VLib SLib Mod SCon VCon
1
Female

2 Female | Rem | 44 | 47 | 118 | 23 | 32 | |
| :--- | :--- | :--- | :--- | ---: | :--- | :--- |
| 3 | Male | Dem | 36 | 34 | 86 | 39 |
| 48 | 53 | 18 | 23 | | | |
| 4 | Male | Rep | 12 | 18 | 62 | 45 |
| 51 | | | | | | |

> library(VGAM)
> ideo.cl1 <-

$$
\begin{gathered}
\text { vglm (cbind(VLib,SLib, Mod, SCon, VCon) ~ Gender + Party, } \\
\text { family=cumulative(parallel=TRUE), data=ideow) }
\end{gathered}
$$

> summary(ideo.cl1)

Call:
vglm(formula = cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party, family = cumulative(parallel = TRUE), data = ideor

Coefficients:

	Estimate Std. Error z value		
(Intercept):1	-1.452	0.123	-11.818
(Intercept):2	-0.458	0.106	-4.333
(Intercept):3	1.255	0.115	10.956
(Intercept):4	2.089	0.129	16.174
GenderMale	-0.117	0.127	-0.921
PartyRep	-0.964	0.129	-7.449

Number of linear predictors: 4
Names of linear predictors:
$\operatorname{logit}(\mathrm{P}[\mathrm{Y}<=1]), \operatorname{logit}(\mathrm{P}[\mathrm{Y}<=2]), \operatorname{logit}(\mathrm{P}[\mathrm{Y}<=3]), \operatorname{logit}(\mathrm{P}[\mathrm{Y}<=4]$

Residual deviance: 15.056 on 10 degrees of freedom

Log-likelihood: -47.415 on 10 degrees of freedom
> deviance(ideo.cl1)
[1] 15.056
> df.residual(ideo.cl1)
[1] 10
> pchisq(deviance(ideo.cl1), df.residual(ideo.cl1), lower.tail = FALSE)
[1] 0.13005

Political Ideology and Party Affiliation (ctd)

Cumulative logit model fit:

$$
\operatorname{logit}[\widehat{\operatorname{Pr}}(Y \leqslant j)]=\hat{\alpha}_{j}-0.117 x_{1}-0.964 x_{2}, \quad j=1,2,3,4 .
$$

- Controlling for gender, estimated odds that a Rep's response is in liberal direction ($\mathrm{Y} \leqslant \mathrm{j}$) rather than conservative $(\mathrm{Y}>\mathrm{j})$ are $e^{-0.964}=0.38$ times estimated odds for a Dem.
> Equivalently: controlling for gender, estimated odds that a Dem's response is in liberal direction $(\mathrm{Y} \leqslant j)$ rather than conservative $(Y>j)$ are $e^{0.964}=2.62$ times estimated odds for a Rep.
> Statement holds for all $j=1,2,3,4$.
- $95 \% \mathrm{Cl}$ for true odds ratio is

$$
e^{-0.964 \pm(1.96)(0.129)}=(0.30,0.49)
$$

Political Ideology and Party Affiliation (ctd)

- Contingency table data. No evidence of lack of fit:

$$
\text { deviance }=15.1, \quad \text { df }=10, \quad p \text {-value }=0.13
$$

\downarrow Test for party effect (controlling for gender), i.e., $\mathrm{H}_{0}: \beta_{2}=0$

$$
\text { Wald: } z=\frac{-0.964}{0.129}=-7.45 \quad\left(z^{2}=55.49\right)
$$

LR: deviance $_{0}-$ deviance $_{1}=71.9-15.1=56.8, \quad$ df $=1$

$$
p \text {-value }<0.0001 \text { (either test) }
$$

Strong evidence that Republicans tend to be less liberal (more conservative) than Democrats (for each gender).

- No evidence of gender effect (controlling for party). (p-value ≈ 0.36 using either Wald or LR test).
> ideo.cl2 <-

$$
\begin{aligned}
& \text { vglm(cbind(VLib, SLib, Mod, SCon, VCon) } \sim \text { Gender, } \\
& \text { family=cumulative(parallel=TRUE), data=ideow) }
\end{aligned}
$$

> deviance(ideo.cl2)
[1] 71.902
> df.residual(ideo.cl2)
[1] 11
> deviance(ideo.cl2) - deviance(ideo.cl1)
[1] 56.847
> pchisq(deviance(ideo.cl2) - deviance(ideo.cl1), df.residual(ideo.cl2) - df.residual(ideo.cl1), lower.tail=FALSE)
[1] $4.711 \mathrm{e}-14$

Party-Gender interaction?

> ideow
Gender Party VLib SLib Mod SCon VCon
1 Female Dem $44 \quad 47118 \quad 23 \quad 32$
2 Female Rep $18 \quad 28 \quad 86 \quad 39 \quad 48$
3 Male Dem $36 \quad 34 \quad 53 \quad 18 \quad 23$

4 Male Rep 12	18	62	45	51

> ideo.csum <- t(apply(ideow[,-(1:2)], 1, cumsum))
> ideo.csum
VLib SLib Mod SCon VCon
$1 \quad 44 \quad 91209 \quad 232 \quad 264$
$\begin{array}{llllll}2 & 18 & 46 & 132 & 171 & 219\end{array}$
$\begin{array}{llllll}3 & 36 & 70 & 123 & 141 & 164\end{array}$
$\begin{array}{llllll}4 & 12 & 30 & 92 & 137 & 188\end{array}$
> ideo.cprop <- ideo.csum[,1:4]/ideo.csum[,5]
> ideo.ecl <- qlogis(ideo.cprop) \# empirical cumul. logits

N			$\begin{aligned} & \circ \\ & + \end{aligned}$		
			$\begin{aligned} & \circ \\ & + \end{aligned}$	$\begin{gathered} \Delta \\ \times \end{gathered}$	
Δ					
--		$\begin{aligned} & + \\ & 0 \end{aligned}$	\times		o Female Dem \triangle Female Rep + Male Dem \times Male Rep
	+	\triangle			
	\bigcirc	\times			
Ш	$\begin{gathered} \Delta \\ \times \end{gathered}$				
p	VLib	SLib	Mod	SCon	
		Ideo			

```
> ideo.cl3 <-
    vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender*Party,
    family=cumulative(parallel=TRUE), data=ideow)
> coef(summary(ideo.cl3))
```

(Intercept) : 1	-1.55209	0.13353	-11.62339
(Intercept) : 2	-0.55499	0.11703	-4.74225
(Intercept) 3	1.16465	0.12337	9.44006
(Intercept) : 4	2.00121	0.13682	14.62633
GenderMale	0.14308	0.17936	0.79772
PartyRep	-0.75621	0.16691	-4.53062
GenderMale:PartyRep	-0.50913	0.25408	-2.00381

> deviance(ideo.cl3)
[1] 11.063
> df.residual(ideo.cl3)
[1] 9
> deviance(ideo.cl1) - deviance(ideo.cl3)
[1] 3.9922
> pchisq(deviance(ideo.cl1) - deviance(ideo.cl3), df.residual(ideo.cl1) - df.residual(ideo.cl3), lower.tail=FALSE)
[1] 0.045712

Political Ideology and Party Affiliation (w/ Interaction)

Plot of empirical logits suggest interaction between party and gender. Model with interaction is

$$
\operatorname{logit}[\operatorname{Pr}(Y \leqslant j)]=\alpha_{j}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}, \quad j=1,2,3,4
$$

- ML fit:

$$
\operatorname{logit}[\widehat{\operatorname{Pr}}(Y \leqslant j)]=\hat{\alpha}_{j}+0.143 x_{1}-0.756 x_{2}-0.509 x_{1} x_{2}
$$

$>$ Test for party \times gender interaction $\left(H_{0}: \beta_{3}=0\right)$:
LR: deviance $_{0}-$ deviance $_{1}=15.1-11.1=3.99$

$$
\mathrm{df}=1 \quad \mathrm{p} \text {-value }=0.046
$$

Some evidence (significant at 0.05 level) that effect of Party varies with Gender (and vice versa).

Political Ideology and Party Affiliation (w/ Interaction) (ctd)

- Estimated odds ratio for party effect $\left(x_{2}\right)$ is

$$
\begin{aligned}
& e^{-0.756}=0.47 \quad \text { when } x_{1}=0(F) \\
& e^{-0.756-0.509}=e^{-1.265}=0.28 \quad \text { when } x_{1}=1(M)
\end{aligned}
$$

- Estimated odds ratio for gender effect $\left(x_{1}\right)$ is

$$
\begin{aligned}
e^{0.143} & =1.15 \quad \text { when } x_{2}=0(\text { Dem }) \\
e^{0.143-0.509}=e^{-0.336} & =0.69 \quad \text { when } x_{2}=1(\text { Rep })
\end{aligned}
$$

Among Dems, males tend to be more liberal than females. Among Reps, males tend to be more conservative than females.

Political Ideology and Party Affiliation (w/ Interaction) (ctd)
$-\widehat{\operatorname{Pr}}(\mathrm{Y}=1)$ (very liberal) for male and female Republicans:

$$
\widehat{\operatorname{Pr}}(Y \leqslant j)=\frac{\exp \left(\hat{\alpha}_{j}+0.143 x_{1}-0.756 x_{2}-0.509 x_{1} x_{2}\right)}{1+\exp \left(\hat{\alpha}_{j}+0.143 x_{1}-0.756 x_{2}-0.509 x_{1} x_{2}\right)}
$$

For $j=1, \hat{\alpha}_{1}=-1.55$.

- Male Republicans ($x_{1}=1, x_{2}=1$):

$$
\widehat{\operatorname{Pr}}(\mathrm{Y}=1)=\frac{e^{-1.55+0.143-0.756-0.509}}{1+e^{-1.55+0.143-0.756-0.509}}=\frac{e^{-2.67}}{1+e^{-2.67}}=0.065
$$

- Female Republicans ($x_{1}=0, x_{2}=1$):

$$
\widehat{\operatorname{Pr}}(\mathrm{Y}=1)=\frac{\mathrm{e}^{-1.55-0.756}}{1+\mathrm{e}^{-1.55-0.756}}=\frac{\mathrm{e}^{-2.31}}{1+\mathrm{e}^{-2.31}}=0.090
$$

- Similarly, $\widehat{\operatorname{Pr}}(Y=2)=\widehat{\operatorname{Pr}}(Y \leqslant 2)-\widehat{\operatorname{Pr}}(Y \leqslant 1)$, etc.

Note $\widehat{\operatorname{Pr}}(\mathrm{Y}=5)=\widehat{\operatorname{Pr}}(\mathrm{Y} \leqslant 5)-\widehat{\operatorname{Pr}}(Y \leqslant 4)=1-\widehat{\operatorname{Pr}}(Y \leqslant 4)$.

Remarks

- Reversing order of response categories changes signs of "slope" estimates (cumulative odds ratio $\mapsto 1$ /cumulative odds ratio).
- For ordinal response, only two sensible orderings.

Ch 8: Models for Matched Pairs

8.1 McNemar's Test

Example (Crossover Study: Drug vs Placebo I)

86 subjects. Randomly assign each to either "drug then placebo" or "placebo then drug". Binary response (S,F) for each.

Treatment	S	F	Total
Drug	61	25	86
Placebo	22	64	86

Methods so far (e.g., X^{2} and G^{2} test of indep, Cl for θ, logistic regr) assume independent samples. Inappropriate for dependent samples (e.g., same subjects in each sample yielding matched pairs of responses).

Example (Crossover Study: Drug vs Placebo II)

To reflect dependence, display data as 86 obs rather than 2×86 obs.

Drug	Placebo			
	S			
	S	12	49	61
	F	10	15	25
		22	64	86

Population probabilities:

There is marginal homogeneity if $\pi_{1+}=\pi_{+1}$.

Under H_{0} : marginal homogeneity,

$$
\frac{\pi_{12}}{\pi_{12}+\pi_{21}}=\frac{1}{2} .
$$

Under H_{0}, each of $n^{*}=n_{12}+n_{21}$ observations has probability $1 / 2$ of contributed to n_{12} and $1 / 2$ of contributing to n_{21} :

$$
n_{12} \sim \operatorname{Bin}\left(n^{*}, \frac{1}{2}\right), \quad \text { mean }=\frac{n^{*}}{2}, \quad \text { std dev }=\sqrt{n^{*}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}
$$

By normal approx. to binomial, for large n^{*},

$$
z=\frac{n_{12}-n^{*} / 2}{\sqrt{n^{*}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}}=\frac{n_{12}-n_{21}}{\sqrt{n_{12}+n_{21}}} \sim N(0,1)
$$

or equivalently

$$
z^{2}=\frac{\left(n_{12}-n_{21}\right)^{2}}{n_{12}+n_{21}} \sim \chi_{1}^{2}
$$

Called McNemar's test.

Example (Crossover Study: Drug vs Placebo III)

$$
\begin{aligned}
& \text { Placebo } \\
& z=\frac{n_{12}-n_{21}}{\sqrt{n_{12}+n_{21}}}=\frac{49-10}{\sqrt{49+10}}=5.1 \quad\left(z^{2}=25.8, d f=1\right)
\end{aligned}
$$

p-value <0.0001 for $\mathrm{H}_{0}: \pi_{1+}=\pi_{+1}$ vs $\mathrm{H}_{\mathrm{a}}: \pi_{1+} \neq \pi_{+1}$.
Extremely strong evidence that probability of success is higher for drug than placebo.

Cl for $\pi_{1+}-\pi_{+1}$

Estimate $\pi_{1+}-\pi_{+1}$ by diff. of sample proportions, $p_{1+}-p_{+1}$.

$$
p_{1+}-p_{+1}=\frac{n_{1+}}{n}-\frac{n_{+1}}{n}=\frac{n_{12}-n_{21}}{n}
$$

$S E=\frac{1}{n} \sqrt{n_{12}+n_{21}-\frac{\left(n_{12}-n_{21}\right)^{2}}{n}}$

Example (Crossover Study: Drug vs Placebo IV)

n_{11}	n_{12}						
n_{21}	n_{22}		\quad				
:---	:---	:---	:---	\quad	12	49	
:---	:---	:---					
10	15						

$$
\begin{aligned}
& p_{1+}-p_{+1}=\frac{49-10}{86}=\frac{39}{86}=0.453 \\
& S E=\frac{1}{86} \sqrt{49+10-\frac{(49-10)^{2}}{86}}=0.075 \\
& 95 \% C I: \quad 0.453 \pm(1.96)(0.075)=0.453 \pm 0.146=(0.31,0.60)
\end{aligned}
$$

Aside: How is the SE derived?

$$
\begin{aligned}
& \left(n_{11}, n_{12}, n_{21}, n_{22}\right) \sim \operatorname{MN}\left(n,\left(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}\right)\right) \\
& \Longrightarrow\left\{\begin{array}{c}
\operatorname{Var}\left(n_{i j}\right)=n \pi_{i j}\left(1-\pi_{i j}\right) \\
\operatorname{Cov}\left(n_{i j}, n_{i^{\prime}, j^{\prime}}\right)=-n \pi_{i j} \pi_{i^{\prime} j^{\prime}} \text { if } i \neq i^{\prime} \text { or } j \neq j^{\prime}
\end{array}\right. \\
& \begin{aligned}
\operatorname{Var}\left(p_{1+}-p_{+1}\right) & =\operatorname{Var}\left(\frac{n_{12}-n_{21}}{n}\right)=\frac{\operatorname{Var}\left(n_{12}-n_{21}\right)}{n^{2}} \\
& =\frac{\operatorname{Var}\left(n_{12}\right)+\operatorname{Var}\left(n_{21}\right)-2 \operatorname{Cov}\left(n_{12}, n_{21}\right)}{n^{2}} \\
& =\frac{n \pi_{12}\left(1-\pi_{12}\right)+n \pi_{21}\left(1-\pi_{21}\right)+2 n \pi_{12} \pi_{21}}{n^{2}} \\
& =\frac{\pi_{12}+\pi_{21}-\left(\pi_{12}^{2}-2 \pi_{12} \pi_{21}+\pi_{21}^{2}\right)}{n} \\
& =\frac{\pi_{12}+\pi_{21}-\left(\pi_{12}-\pi_{21}\right)^{2}}{n}(\text { ctd next frame })
\end{aligned}
\end{aligned}
$$

$$
\operatorname{Var}\left(p_{1+}-p_{+1}\right)=\frac{\pi_{12}+\pi_{21}-\left(\pi_{12}-\pi_{21}\right)^{2}}{n}
$$

$$
\widehat{\operatorname{Var}}\left(p_{1+}-p_{+1}\right)=\frac{p_{12}+p_{21}-\left(p_{12}-p_{21}\right)^{2}}{n}
$$

$$
=\frac{\frac{n_{12}}{n}+\frac{n_{21}}{n}-\left(\frac{n_{12}}{n}-\frac{n_{21}}{n}\right)^{2}}{n}
$$

$$
=\frac{\frac{n_{12}}{n}+\frac{n_{21}}{n}-\frac{\left(n_{12}-n_{21}\right)^{2}}{n^{2}}}{n} \times \frac{n}{n}
$$

$$
=\frac{n_{12}+n_{21}-\frac{\left(n_{12}-n_{21}\right)^{2}}{n}}{n^{2}}
$$

Another way:

$$
\begin{aligned}
& \operatorname{Var}\left(p_{1+}-p_{+1}\right)=\operatorname{Var}\left(p_{1+}\right)+\operatorname{Var}\left(p_{+1}\right)-2 \operatorname{Cov}\left(p_{1+}, p_{+1}\right) \\
& \begin{aligned}
\operatorname{Var}\left(p_{1+}\right)=\frac{\pi_{1+}\left(1-\pi_{1+}\right)}{n}, \quad \operatorname{Var}\left(p_{+1}\right)=\frac{\pi_{+1}\left(1-\pi_{+1}\right)}{n}, \\
\operatorname{Cov}\left(p_{1+}, p_{+1}\right)=\operatorname{Cov}\left(\frac{n_{1+}}{n}, \frac{n_{+1}}{n}\right)=\operatorname{Cov}\left(\frac{n_{11}+n_{12}}{n}, \frac{n_{11}+n_{21}}{n}\right) \\
\quad=\frac{1}{n^{2}} \operatorname{Cov}\left(n_{11}+n_{12}, n_{11}+n_{21}\right) \\
\quad=\frac{1}{n^{2}}\left[\operatorname{Var}\left(n_{11}\right)+\operatorname{Cov}\left(n_{11}, n_{21}\right)+\operatorname{Cov}\left(n_{12}, n_{11}\right)+\operatorname{Cov}\left(n_{12}, n_{21}\right)\right] \\
\quad=\frac{1}{n^{2}}\left[n \pi_{11}\left(1-\pi_{11}\right)-n \pi_{11} \pi_{21}-n \pi_{12} \pi_{11}-n \pi_{12} \pi_{21}\right] \\
\quad=\frac{1}{n}[\pi_{11}(\underbrace{1-\pi_{11}-\pi_{12}-\pi_{21}}_{\pi_{22}})-\pi_{12} \pi_{21}] \\
\quad=\frac{\pi_{11} \pi_{22}-\pi_{12} \pi_{21}}{n}
\end{aligned}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \operatorname{Var}\left(p_{1+}-p_{+1}\right) \\
& \quad=\frac{1}{n}\left[\pi_{1+}\left(1-\pi_{1+}\right)+\pi_{+1}\left(1-\pi_{+1}\right)-2\left(\pi_{11} \pi_{22}-\pi_{12} \pi_{21}\right)\right]
\end{aligned}
$$

Often matched-pairs exhibit positive association (odds-ratio greater than 1), i.e., $\pi_{11} \pi_{22}>\pi_{12} \pi_{21}$, so covariance term is negative. Compare to two independent samples of size n each.

Continuing,

$$
\begin{aligned}
\widehat{\operatorname{Var}}\left(p_{1+}\right. & \left.-p_{+1}\right) \\
& =\frac{1}{n}\left[p_{1+}\left(1-p_{1+}\right)+p_{+1}\left(1-p_{+1}\right)-2\left(p_{11} p_{22}-p_{12} p_{21}\right)\right]
\end{aligned}
$$

After algebra, this simplifies to expression given before.
> crossover <-
matrix (c $(12,10,49,15)$, nrow=2,

$$
\begin{aligned}
& \text { dimnames=list }(\text { Drug=c ("S", "F") , } \\
&\text { Placebo=c }(" S ", " F ")))
\end{aligned}
$$

> crossover <- as.table(crossover)
> crossover

Placebo

Drug S F
S 1249
F 1015
> mcnemar.test(crossover, correct = FALSE)
McNemar's Chi-squared test
data: crossover
McNemar's chi-squared $=25.78$, $d f=1, p-v a l u e=$
3.827e-07

8.5 Rater Agreement

Example (Movie Reviews by Siskel and Ebert)

Ebert				
Siskel	Con	Mixed	Pro	Total
Con	24	8	13	45
Mixed	8	13	11	32
Pro	10	9	64	83
Total	42	30	88	160

How strong is their agreement?

8.5.5 Cohen's Kappa

Let $\pi_{i j}=\operatorname{Pr}(S=i, E=j)$.

$$
\begin{aligned}
\operatorname{Pr}(\text { agree }) & =\pi_{11}+\pi_{22}+\pi_{33}=\sum_{i} \pi_{i i} \\
& =1 \text { if perfect agreement }
\end{aligned}
$$

If ratings are independent, then $\pi_{i i}=\pi_{i+} \pi_{+i}$ and

$$
\operatorname{Pr}(\text { agreelindep })=\sum_{i} \pi_{i+} \pi_{+i}
$$

Cohen's kappa is

$$
k=\frac{\operatorname{Pr}(\text { agree })-\operatorname{Pr}(\text { agree } \mid \text { indep })}{1-\operatorname{Pr}(\text { agree })}=\frac{\sum_{i} \pi_{i i}-\sum_{i} \pi_{i+} \pi_{+i}}{1-\sum_{i} \pi_{i+} \pi_{+i}}
$$

Note:
> $k=0$ if agreement only equals that expected under independence.

- $\mathrm{k}=1$ if perfect agreement.
- Demoninator = maximum difference for numerator, attained if agreement is perfect.

Example (Siskel and Ebert (ctd))

$$
\begin{aligned}
& \sum_{i} \hat{\pi}_{i i}=\frac{24+13+64}{160}=0.63 \\
& \begin{aligned}
\sum_{i} & \hat{\pi}_{i+} \hat{\pi}_{+i}=\left(\frac{45}{160}\right)\left(\frac{42}{160}\right)+\left(\frac{32}{160}\right)\left(\frac{30}{160}\right)+\left(\frac{83}{160}\right)\left(\frac{88}{160}\right) \\
& =0.40
\end{aligned} \\
& \hat{\kappa}=\frac{0.63-0.40}{1-0.40}=0.39
\end{aligned}
$$

Moderate agreement: difference between observed agreement and agreement expected under independence is about 40\% of the maximum possible difference.

- 95\% CI for k :

$$
\hat{\mathrm{K}} \pm 1.96 \mathrm{SE}=0.39 \pm(1.96)(0.06)=0.39 \pm 0.12=(0.27,0.51)
$$

- For $\mathrm{H}_{0}: \mathrm{k}=0$,

$$
z=\frac{\hat{k}}{\mathrm{SE}}=\frac{0.39}{0.06}=6.49
$$

Very strong evidence that agreement is better than "chance".

- A very simple cohens.kappa() is in the icda package. More sophisticated versions can be found in several packages on CRAN (e.g., irr, concord, and psy).
> data(moviereviews)
> moviereviews
Ebert
Siskel Con Mixed Pro

Con	24	8	13

Mixed $8 \quad 1311$

Pro	10	9	64

> cohens.kappa(moviereviews)
\$kappa
[1] 0.38884

\$SE

[1] 0.059917

Ch 9: Models for Correlated, Clustered Responses

Correlated responses occur in several ways, including:

- Repeated measures/longitudinal studies: repeated observations on each subject.
- Multiple, matched sets of subjects.
- Children in the same family.
- Children in the same elementary school class (children within class, class within school, school within district, ...).
- Fetuses from the same litter of mice.

Usual model forms apply (e.g., logistic regression for binary response, cumulative logit for ordinal response), but model fitting must account for dependence (e.g., from repeated measures on subjects) in order to get appropriate standard errors and valid inferences.

9.2 Generalized Estimating Equations (GEE) for Repeated Measures

- Specify model in usual way.
- Select a "working correlation" matrix for best guess about correlation pattern between pairs of observations.

Ex: For T repeated responses, exchangeable correlation matrix is
Time
1
1
2
\vdots
T $\quad\left(\begin{array}{cccc}1 & \rho & \ldots & \mathrm{~T} \\ & \rho & 1 & \ldots \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \ldots & 1\end{array}\right)$

- Fitting method gives estimates that are consistent even if correlation structure is misspecified. Adjusts standard errors to reflect actual observed depedendence.
- Available in R package gee and others.

Drug	Placebo			
	S F			
	S	12	49	61
	F	10	15	25
		22	64	86

Model:

$$
\operatorname{logit}\left[\operatorname{Pr}\left(Y_{t}=1\right)\right]=\alpha+\beta t, \quad t= \begin{cases}1, & \text { drug } \\ 0, & \text { placebo }\end{cases}
$$

GEE fit:

$$
\operatorname{logit}\left[\operatorname{Pr}\left(Y_{t}=1\right)\right]=-1.07+1.96 \mathrm{t}, \quad \mathrm{SE}(\hat{\beta})=0.377 \text { ("robust") }
$$

Odds of $S \mathrm{w} /$ drug estimated to be $\mathrm{e}^{1.96}=7.1$ times odds w/ placebo. $95 \% \mathrm{Cl}$ for odds ratio (for marginal probabilities) is

$$
e^{1.96 \pm(1.96)(0.377)}=\left(e^{1.22}, e^{2.70}\right)=(3.4,14.9)
$$

Note:

- Sample marginal odds ratio is $\hat{\theta}=(61 / 25) /(22 / 64)=7.1$ $(\log \hat{\theta}=1.96)$.
- With GEE approach, can also have "between-subject" explanatory variables, e.g., gender, order of treatments.

GEE is a "quasi-likelihood" method.

- No particular form assumed for joint distribution of $\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{T}}\right)$
- Hence, no likelihood function, no LR inference (LR test, LR CI).
- For responses $\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{T}}\right)$ at T times, we consider marginal model that describes each Y_{t} in terms of explanatory var's.
- Alternative conditional model put terms in model for subjects, effects apply conditional on subject, e.g.,

$$
\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i t}=1\right)\right]=\alpha_{i}+\beta t \quad\left(\alpha_{i}=\text { effect for subject } i\right)
$$

$\left\{\alpha_{i}\right\}$ commonly treated as "random effects" having a normal distribution (Ch 10).
> library (gee)
> crossover
Placebo
Drug S F
S 1249
F 1015
> cross.df <- data.frame(crossover)
> cross.df <-
transform(cross.df,

```
Drug = as.numeric(Drug=="S"),
Placebo = as.numeric(Placebo=="S"))
```

> cross.df

	Drug	Placebo	Freq
1	1	1	12
2	0	1	10
3	1	0	49
4	0	0	15

> Freq <- cross.df\$Freq
> cross.df\$Freq <- NULL
> cross.df <- cross.df[rep(1:4, Freq),]
> rm(Freq)
> head(cross.df)

	Drug	Placebo
1	1	1
1.1	1	1
1.2	1	1
1.3	1	1
1.4	1	1
1.5	1	1

> rownames(cross.df) <- NULL
> head(cross.df)

	Drug	Placebo
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	1	1

> xtabs(~ Drug + Placebo, cross.df)

\[

\]

> dim(cross.df)
[1] 862
> cross.df\$Subject <- factor(1:86)
> crossm <- melt(cross.df)
> head(crossm)
Subject variable value

1	1	Drug	1
2	2	Drug	1
3	3	Drug	1
4	4	Drug	1
5	5	Drug	1
6	6	Drug	1

> \#\# VERY IMPORTANT: Data should be ordered by "cluster"
> crossm <- crossm[order(crossm\$Subject),]
> head(crossm)

```
    Subject variable value
\begin{tabular}{lrrr}
1 & 1 & Drug & 1 \\
87 & 1 & Placebo & 1 \\
2 & 2 & Drug & 1 \\
88 & 2 & Placebo & 1 \\
3 & 3 & Drug & 1 \\
89 & 3 & Placebo & 1
\end{tabular}
> names(crossm)[2:3] <- c("Treat","Resp")
> names(crossm)
```

[1] "Subject" "Treat" "Resp"

```
> crossm <-
transform(crossm, Treat=relevel(Treat, "Placebo"))
```

Note: the gee function has the annoying habit of printing out the starting values used in its iterative algorithm. These values, obtained from glm, are not the actual GEE estimates (unless the working correlation structure is independence) and should be ignored.

```
> cross.gee1 <-
    gee(Resp ~ Treat, id=Subject, data=crossm,
        family=binomial, corstr="exchangeable")
(Intercept) TreatDrug
    -1.0678 1.9598
> cross.gee2 <-
    gee(Resp ~ Treat, id=Subject, data=crossm,
        family=binomial, corstr="independence")
(Intercept) TreatDrug
    -1.0678 1.9598
```

> summary (cross.gee1)
GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified $98 / 01 / 27$ (1998)

Model:

Link:	Logit
Variance to Mean Relation: Binomial	
Correlation Structure:	Exchangeable

Call:
gee(formula = Resp ~ Treat, id = Subject, data = crossm, fam corstr = "exchangeable")

Summary of Residuals:
$\begin{array}{rrrrr}\text { Min } & \text { 1Q } & \text { Median } & \text { 3Q } & \text { Max } \\ -0.70930 & -0.25581 & -0.25581 & 0.29070 & 0.74419\end{array}$

Coefficients:

Estimate Naive S.E. Naive z Robust S.E.			
(Intercept)	-1.0678 0.2	-4.2956	0.24714
TreatDrug	1.9598 0.37	5.1596	0.37723
Robust z			
(Intercept) -4.3207			
TreatDrug 5.1953			
Estimated Scale Parameter: 1.0118			
Number of Iterations: 1			
Working Correlation			
[,1] [,2]			
$[1] \quad 1.00000-$,			
[2,] -0.21407 1.00000			

> coef(summary(cross.gee1))

	Estimate	Naive S.E. Naive z Robust S.E.		
(Intercept)	-1.0678	0.24859	-4.2956	0.24714
TreatDrug	1.9598	0.37984	5.1596	0.37723
	Robust z			
(Intercept)	-4.3207			
TreatDrug	5.1953			
coef(summary(cross.gee2))				
Estimate Naive S.E. Naive z Robust S.E.				
(Intercept)	-1.0678	0.24859	-4.2956	0.24714
TreatDrug	1.9598	0.34475	5.6848	0.37723
	Robust z			
(Intercept)	-4.3207			
TreatDrug	5.1953			

Example (Depression I)

$\mathrm{y}=$ response on mental depression (normal, abnormal) measured three times (after 1, 2, and 4 wks of treatment) two drug treatments (standard, new) two severity of initial diagnosis groups (mild, severe) Is the rate of improvement better with the new drug?

Time

0	A	A	A	A	N	N	N	N
1	A	A	N	N	A	A	N	N
2	A	N	A	N	A	N	A	N

Severity	Drug								
Mild	Std	6	15	4	14	3	9	13	16
	New	0	9	2	22	0	6	0	31
Severe	Std	28	27	15	9	9	8	2	2
	New	6	32	5	31	2	5	2	7

Example (Depression II)

Sample Proportion Normal

Severity	Drug	Week 1	Week 2	Week 4
Mild	Std	0.51	0.59	0.68
	New	0.53	0.79	0.97
Severe	Std	0.21	0.28	0.46
	New	0.18	0.50	0.83

E.g., $0.51=(3+9+13+16) /(6+15+4+14+3+9+13+16)$

$$
\begin{aligned}
\mathrm{Y}_{\mathrm{t}} & =\text { resp of randomly selected subj at time } \mathrm{t}(1=\text { norm, } 0=\text { abnor }) \\
\mathrm{s} & =\text { severity of initial diagnosis }(1=\text { severe, } 0=\text { mild }) \\
\mathrm{d} & =\operatorname{drug}(1=\text { new, } 0=\text { std }) \\
\mathrm{t} & =\text { time }(0,1,2), \text { which is } \log _{2}(\text { weeks of trt })
\end{aligned}
$$

Model:

$$
\log \left\{\frac{\operatorname{Pr}\left(Y_{t}=1\right)}{\operatorname{Pr}\left(Y_{t}=0\right)}\right\}=\alpha+\beta_{1} s+\beta_{2} d+\beta_{3} t
$$

Assumes same rate of change β_{3} over time for each (s, d) combination. Unrealistic?

More realistic model permits time effect to differ by drug:

$$
\begin{aligned}
& \log \left\{\frac{\operatorname{Pr}\left(Y_{t}=1\right)}{\operatorname{Pr}\left(Y_{t}=0\right)}\right\}=\alpha+\beta_{1} s+\beta_{2} d+\beta_{3} t+\beta_{4} d t \\
& \text { time effect }= \begin{cases}\beta_{3} & \text { if } d=0 \text { (std drug) } \\
\beta_{3}+\beta_{4} & \text { if } d=1 \text { (new drug) }\end{cases}
\end{aligned}
$$

GEE estimates: $\quad \hat{\alpha}=-0.028$

$$
\hat{\beta}_{1}=-1.31 \quad \hat{\beta}_{2}=-0.06 \quad \hat{\beta}_{3}=0.48 \quad \hat{\beta}_{4}=1.02
$$

Test of H_{0} : no interaction $\left(\beta_{4}=0\right)$ has

$$
z=\frac{\hat{\beta}_{4}}{S E}=\frac{1.02}{0.188}=5.42 \quad\left(z^{2}=29.4, \mathrm{df}=1\right)
$$

Very strong evidence of faster improvement for new drug.

- When initial diagnosis is severe, estimated odds of normal response are $e^{-1.31}=0.27$ times estimated odds when initial diagnosis is mild, at each $d \times t$ combination.
$\nabla \hat{\beta}_{2}=-0.06$ is drug effect only at $t=0 . e^{-0.06}=0.94 \approx 1$, so essentially no drug effect at $\mathrm{t}=0$ (after 1 week).

Drug effect at end of study $(t=2)$ estimated to be $e^{\hat{\beta}_{2}+2 \hat{\beta}_{4}}=7.2$.

- Estimated time effects are

$$
\begin{array}{cl}
\operatorname{std} \operatorname{drug}(d=0): & \hat{\beta}_{3}=0.48 \\
\text { new } \operatorname{drug}(d=1): & \hat{\beta}_{3}+\hat{\beta}_{4}=1.50
\end{array}
$$

- Examined $s \times \mathrm{d}$ and $\mathrm{s} \times \mathrm{t}$ interactions, but they were not statistically significant.
- Started w/ exchangeable working correlation, but est'd ρ close to 0 .
> library (gee)
> data(depression)
> head(depression)

subject					severity
1	1	mild	std	0	normal
2	1	mild	std	1	normal
3	1	mild	std	2	normal
4	2	mild	std	0	normal
5	2	mild	std	1	normal
6	2	mild	std	2	normal

> dep.gee1 <-
gee((response == "normal") ~ severity + drug*time, id=subject, data=depression, family=binomial)
(Intercept) severitysevere $\begin{array}{rr}-0.027988 & -1.313911 \\ \text { time } & \text { drugnew:time }\end{array}$

drugnew
-0.059604

> summary (dep.gee1)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link:	Logit
Variance to Mean Relation: Binomial	
Correlation Structure:	Independent

Call:
gee(formula = (response == "normal") ~ severity + drug * time id = subject, data = depression, family = binomial)

Summary of Residuals:
$\begin{array}{rrrrr}\text { Min } & \text { 1Q } & \text { Median } & \text { 3Q } & \text { Max } \\ -0.948442 & -0.406833 & 0.051558 & 0.388310 & 0.802422\end{array}$

Coefficients:

	Estimate	Naive S.E.	Naive z
(Intercept)	-0.027988	0.16271	-0.17202
severitysevere	-1.313911	0.14534	-9.04006
drugnew	-0.059604	0.22058	-0.27021
time	0.482412	0.11392	4.23457
drugnew:time	1.017445	0.18741	5.42889
	Robust S.E.	Robust z	
(Intercept)	0.17419	-0.16068	
severitysevere	0.14598	-9.00034	
drugnew	0.22854	-0.26080	
time	0.11994	4.02228	
drugnew:time	0.18769	5.42077	

Estimated Scale Parameter: 0.98541
Number of Iterations: 1
Working Correlation

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	0	0
$[2]$,	0	1	0
$[3]$,	0	0	1

By way of illustration, the next few frames show bits and pieces of some other gee fits to these data. Note that the working correlation matrix can be "independence" (default), "exchangeable", "AR-M", "stat_M_dep", "non_stat_M_dep", "unstructured", and "fixed". See the help for gee for details.
> dep.gee2 <-

$$
\begin{aligned}
& \text { gee }((\text { response }==\text { "normal") } \sim \text { severity }+ \text { drug*time, } \\
& \text { id=subject, data=depression, family=binomial, } \\
& \text { corstr="exchangeable") }
\end{aligned}
$$

(Intercept) severitysevere
-0.027988 -1.313911

drugnew
-0.059604

time drugnew:time
$0.482412 \quad 1.017445$
> dep.gee2\$working.correlation

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1.0000000	-0.0034327	-0.0034327
$[2]$,	-0.0034327	1.0000000	-0.0034327
$[3]$,	-0.0034327	-0.0034327	1.0000000

> coef(summary(dep.gee1))[,c(1,2,4)]
Estimate Naive S.E. Robust S.E.

(Intercept)	-0.027988	0.16271	0.17419
severitysevere	-1.313911	0.14534	0.14598
drugnew	-0.059604	0.22058	0.22854
time	0.482412	0.11392	0.11994
drugnew: time	1.017445	0.18741	0.18769

> coef(summary(dep.gee2))[,c(1,2,4)]
Estimate Naive S.E. Robust S.E.

(Intercept)	-0.028099	0.16255	0.17418
severitysevere	-1.313910	0.14486	0.14596
drugnew	-0.059267	0.22053	0.22856
time	0.482464	0.11412	0.11994
drugnew:time	1.017193	0.18771	0.18770

```
> dep.gee3 <-
    gee((response == "normal") ~ (severity + drug)*time,
    id=subject, data=depression, family=binomial)
    (Intercept) severitysevere
        -1.528703
        time
        0.358728
    severitysevere:time drugnew:time
    0.235006
> round(coef(summary(dep.gee3))[,"Robust z"],2)
```

(Intercept)
0.37
drugnew
-0.24
severitysevere:time
1.29
severitysevere -6.55 time 2.31
drugnew: time
5.33

Note:

- GEE have been generalized to multivariate categorical responses, but software is still limited.

SAS's PROC GENMOD will do GEE for cumulative logit models, but, at last check, only with independence working correlations.

See insomnia study in Section 9.3.2 for an example.

- Missing data is not uncommon and can be very problematic unless missing completely at random (MCAR): missingness unrelated to response or any explanatory variables.

Missing at random (MAR) means missingness unrelated to response after controlling for explanatory variables. Methods exist to handle this and some other forms of missingness

Ignoring missing data leads to biased estimates.

Analyzing Repeated Measurements and Other Clustered Data

Observations ($\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{T}}$) (e.g., T times).

1. Marginal Models (Ch. 9)

Simultaneously model each (marginal) $E\left(Y_{t}\right), t=1, \ldots, T$. Get standard errors that account for the actual dependence using method such as GEE (generalized estimating equations).

Ex. Binary response $Y_{t}=0$ or $1, t=1,2$ (matched pairs).

$$
E\left(Y_{t}\right)=\operatorname{Pr}\left(Y_{t}=1\right)
$$

Model: $\operatorname{logit}\left[\operatorname{Pr}\left(Y_{\mathrm{t}}=1\right)\right]=\alpha+\beta x_{\mathrm{t}}$,
$\chi_{\mathrm{t}}=$ value of explan. var. for th obs.
Depression example (matched triplets): some explanatory variables constant across t (severity and drug), others vary (time).
2. Random Effects Models (Ch. 10)

Account for having multiple responses per subject (or "cluster") by putting a subject term in model.

Ex. Binary response $Y_{t}=0$ or 1 .
Let $Y_{i t}=$ response by subject i at time t.
Model: $\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i t}=1\right)\right]=\alpha_{i}+\beta x_{i t}, \quad t=1, \ldots, T$
Intercept α_{i} varies by subject.

$$
\begin{aligned}
& \text { large positive } \alpha_{i} \Longrightarrow \\
& \text { large negative } \alpha_{i} \Longrightarrow \text { small } \operatorname{Pr}\left(Y_{i t}=1\right) \text { each } t \\
&\left.Y_{i t}=1\right) \text { each } t
\end{aligned}
$$

Heterogeneous population \Longrightarrow highly variable $\left\{\alpha_{i}\right\}$.
Problem: number of parameters > number of subjects. Solution: treat $\left\{\alpha_{i}\right\}$ as random rather than parameters (fixed).

Assume a distribution for $\left\{\alpha_{i}\right\}$, e.g., $\alpha_{i} \sim N\left(\alpha, \sigma^{2}\right)$, i.e.,

$$
\alpha_{i}=\alpha+u_{i}, \quad u_{i} \sim N\left(0, \sigma^{2}\right)
$$

where α is a fixed, unknown parameter.
Model: $\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i t}=1\right)\right]=u_{i}+\alpha+\beta x_{i t}$
$\left\{u_{i}\right\}$ are random effects.
Parameters α and β are fixed effects.
$Y_{i 1}, Y_{i 2}, \ldots, Y_{i T}$ conditionally independent given u_{i}.
But marginally dependent: responses within subject more alike than between subjects.

A generalized linear mixed model (GLMM) is a GLM with both fixed and random effects.

Note that random effects $\left\{u_{i}\right\}$ are unobserved (not data). Software must "integrate out" $\left\{u_{i}\right\}$ to get likelihood fcn, MLEs $\hat{\alpha}, \hat{\beta}$, SE's. Also estimate σ^{2} and can "predict" $\left\{u_{i}\right\}$.

Example (Depression Study)

Time Response Pattern

0	A	A	A	A	N	N	N	N
1	A	A	N	N	A	A	N	N
2	A	N	A	N	A	N	A	N

Severity	Drug								
Mild	Std	6	15	4	14	3	9	13	16
	New	0	9	2	22	0	6	0	31
Severe	Std	28	27	15	9	9	8	2	2
	New	6	32	5	31	2	5	2	7

Previously used GEE to fit "marginal model"

$$
\operatorname{logit}\left[\operatorname{Pr}\left(Y_{t}=1\right)\right]=\alpha+\beta_{1} s+\beta_{2} d+\beta_{3} t+\beta_{4} d t
$$

$Y_{t}=1$ (normal);
$t=\log _{2}($ wks on trt);
$s=0,1$ (initial diagnosis.: mild vs severe);
$d=0,1$ (drug: std vs new).

Now use ML to fit "random effects model" (a.k.a., "mixed model")

$$
\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i t}=1\right)\right]=u_{i}+\alpha+\beta_{1} s+\beta_{2} d+\beta_{3} t+\beta_{4} d t
$$

Assume $\left\{u_{i}\right\}$ indep. $N\left(0, \sigma^{2}\right)$. Need to estimate σ^{2}.
MLEs: $\hat{o}=0.057\left(\hat{o}^{2}=0.00323\right), \quad \hat{\alpha}=-0.028$

$$
\hat{\beta}_{1}=-1.31 \quad \hat{\beta}_{2}=-0.06 \quad \hat{\beta}_{3}=0.48 \quad \hat{\beta}_{4}=1.02
$$

> library(lme4)
> data(depression)
> head(depression)

subject severity	drug time	response		
1	mild	std	0	normal
1	mild	std	1	normal
1	mild	std	2	normal
2	mild	std	0	normal
2	mild	std	1	normal
2	mild	std	2	normal

> dep.lme4.1 <-

```
glmer((response == "normal")
    ~ severity + drug*time + (1 | subject),
    family = binomial, data = depression)
```

```
> summary(dep.lme4.1)
```

Generalized linear mixed model fit by the Laplace approximat Formula: (response == "normal") ~ severity + drug * time + (1

Data: depression
AIC BIC logLik deviance
11741204 -581 1162
Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 0.003230 .0568
Number of obs: 1020, groups: subject, 340

Fixed effects:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	-0.0280	0.1640	-0.17	0.86
severitysevere	-1.3149	0.1466	-8.97	$<2 \mathrm{e}-16$
drugnew	-0.0597	0.2223	-0.27	0.79
time	0.4827	0.1148	4.21	$2.6 \mathrm{e}-05$
drugnew:time	1.0181	0.1888	5.39	$7.0 \mathrm{e}-08$

Correlation of Fixed Effects:
(Intr) svrtys drugnw time
severitysvr -0.403
$\begin{array}{llll}\text { drugnew } & -0.614 & -0.010 & \\ \text { time } & -0.679 & -0.094 & 0.530\end{array}$
drugnew:tim $0.468-0.079-0.750-0.595$

In this example, GLMM and GEE estimates and SE's for fixed effects are nearly identical:

	GLMM			GEE	
	Est	SE		Est	SE
alpha	-0.03	0.16		-0.03	0.17
beta.1	-1.31	0.15		-1.31	0.15
beta.2	-0.06	0.22		-0.06	0.23
beta.3	0.48	0.11		0.48	0.12
beta.4	1.02	0.19		1.02	0.19

Why? Because there appears to be little correlation between repeated measurements on subjects:
$\vee \hat{\rho}=-0.003 \approx 0$ in GEE with exchangeable working correlation.
> $\hat{o}=0.057 \approx 0$ in GLMM. According to model, 95% of all individuals will have u_{i} between $\pm 1.96 \sigma$. Estimate this as
$\pm 1.96(0.057)= \pm 0.11$. But $e^{-0.11}=0.89$ and $e^{0.11}=1.12$, so effect of u_{i} on odds is estimated to be small for most subjects.

Note:

- When $\hat{o}=0$, estimates and SEs same as treating repeated observations as independent.
- When ô is large, estimated β s from random effects logit model usually larger than from marginal model. They are estimating different things: see figure below. (Details in Sec. 10.1.4 of text.)

Teratology Overdispersion

- Female rats on iron-deficient diets assigned to four groups:

Gp 1: placebo
Gp 2: iron injections on days 7 and 10
Gp 3: iron injections on days 0 and 7
Gp 4: iron injections weekly

- Made pregnant and sacrificed after 3 weeks.
- Response: fetus dead or alive. Data on next frame. (Gp = group, LS = litter size, ND = number dead in litter).
- Cluster $=$ litter.
$\vee \pi_{i t}=\operatorname{Pr}($ fetus t in litter i dead $)$.
$>$ Model: $\quad \operatorname{logit}\left(\pi_{i t}\right)=\alpha+\beta_{2} z_{i 2}+\beta_{3} z_{i 3}+\beta_{4} z_{i 4}$, where

$$
z_{i j}= \begin{cases}1, & \text { if litter } i \text { in trt gp } j, \\ 0, & \text { o/w }\end{cases}
$$

Teratology Overdispersion (ctd)

Gp	LS	ND									
1	10	1	1	14	14	2	10	1	3	8	0
1	11	4	1	12	7	2	3	1	3	11	1
1	12	9	1	11	9	2	13	1	3	14	0
1	4	4	1	13	8	2	12	0	3	14	1
1	10	10	1	14	5	2	14	4	3	11	0
1	11	9	1	10	10	2	9	2	4	3	0
1	9	9	1	12	10	2	13	2	4	13	0
1	11	11	1	13	8	2	16	1	4	9	2
1	10	10	1	10	10	2	11	0	4	17	2
1	10	7	1	14	3	2	4	0	4	15	0
1	12	12	1	13	13	2	1	0	4	2	0
1	10	9	1	4	3	2	12	0	4	14	1
1	8	8	1	8	8				4	8	0
1	11	9	1	13	5				4	6	0
1	6	4	1	12	12				4	17	0
1	9	7									

> data(teratology)
> \#\# Data also include HB = mother's hemoglobin level
> head(teratology)


```
glm(formula = cbind(R, N - R) ~ GRP, family = binomial, data
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-4.430	-0.975	-0.028	1.402	2.783

Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	1.144	0.129	8.85	$<2 \mathrm{e}-16$
GRP2	-3.323	0.331	-10.04	$<2 \mathrm{e}-16$
GRP3	-4.476	0.731	-6.12	$9.2 \mathrm{e}-10$
GRP4	-4.130	0.476	-8.67	$<2 \mathrm{e}-16$

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 509.43 on 57 degrees of freedom Residual deviance: 173.45 on 54 degrees of freedom AIC: 252.9

Teratology Overdispersion (ctd)

- Binomial model fits poorly ($\mathrm{X}^{2}=154.7, \mathrm{G}^{2}=173.5, \mathrm{df}=54$).
> There is inter-litter variability that cannot be accounted for in a binomial model by treatment group alone.
- Fetuses are more alike within litters than across litters, even within the same treatment group.
- Standard errors invalid (too small).
- Possible solutions:
- GEE: models marginal (population averaged) effect of trt.
- GLMM: models litter-specific effect.
- At least two other approaches not discussed in this class:
- Quasi-binomial: simplified version of GEE.
- Beta-binomial: parametric mixture model, analogous to negative-binomial for count data (Ch 3). Motivation similar to GLMM.
> \#\# Adding explicit litter variable for remaining analyses:
> teratology\$Litter <- as.factor(1:nrow(teratology))
> \#\# Need data in ungrouped (binary) format for GEE (???):
> teratbnry <- teratology
> teratbnry\$N <- teratbnry\$R <- NULL
> teratbnry <-
teratbnry [rep(1:nrow(teratology), teratology\$N),]
> rownames (teratbnry) <- NULL \# cleaning up row names
> teratbnry\$Response <-
with(teratology,
unlist(apply(cbind(R, N-R), 1,
function(x) rep(c("Dead","Alive"), x))))
> head(teratbnry, 4)
HB GRP Litter Response

1	4.1	1	1	Dead
2	4.1	1	1	Alive
3	4.1	1	1	Alive
4	4.1	1	1	Alive

> library(gee)
> terat.gee <-

$$
\begin{aligned}
& \text { gee ((Response == "Dead") ~ GRP, id = Litter, } \\
& \text { data = teratbnry, family = binomial, } \\
& \text { corstr = "exchangeable") }
\end{aligned}
$$

(Intercept)	GRP2	GRP3	GRP4
1.1440	-3.3225	-4.4762	-4.1297

> coef(summary(terat.gee))[,c("Estimate","Robust S.E.")]
Estimate Robust S.E.

(Intercept)	1.2115	0.26956
GRP2	-3.3692	0.43042
GRP3	-4.5837	0.62354
GRP4	-4.2474	0.60479

> \#\# Big working correlation matrix (17 x 17), but
> \#\# all correlations equal with exchangeable struc:
> terat.gee\$working.correlation[1,2]
[1] 0.18534
> \#\# glmer can use grouped or ungrouped data.
> library(lme4)
> \#\# Using grouped data
> terat.glmm <-

$$
\begin{aligned}
& \text { glmer (cbind }(\mathrm{R}, \mathrm{~N}-\mathrm{R}) \sim \mathrm{GRP}+(1 \mid \text { Litter }), \\
& \text { data }=\text { teratology, family = binomial) }
\end{aligned}
$$

> \#\# Using ungrouped binary data
> terat.glmm <-

$$
\begin{gathered}
\text { glmer ((Response == "Dead") ~ GRP + (1|Litter), } \\
\text { data }=\text { teratbnry, family = binomial) }
\end{gathered}
$$

> coef(summary(terat.glmm))

	Estimate	Std. Error z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	1.8095	0.32858	5.5070	$3.6505 \mathrm{e}-08$
GRP2	-4.5398	0.67787	-6.6972	$2.1242 \mathrm{e}-11$
GRP3	-5.8838	1.17637	-5.0017	$5.6840 \mathrm{e}-07$
GRP4	-5.6068	0.86188	-6.5054	$7.7510 \mathrm{e}-11$

Teratology Overdispersion (ctd)

	Binomial ML	GEE	GLMM
(Intercept)	$1.14(0.13)$	$1.21(0.27)$	$1.81(0.33)$
GRP2	$-3.32(0.33)$	$-3.37(0.43)$	$-4.54(0.68)$
GRP3	$-4.48(0.73)$	$-4.58(0.62)$	$-5.88(1.18)$
GRP4	$-4.13(0.48)$	$-4.25(0.6)$	$-5.61(0.86)$

- SEs for binomial ML fit invalid (because of lack of fit)
- GEE estimates are similar to binomial but with larger SEs.
- Estimate marginal (population averaged) effects.
- GLMM estimates are larger in magnitude.
- Estimate conditional (within litter) effects.

Ch 7: Loglinear Models

- Logistic regression and other models in Ch 3-6, 8-10 distinguish between a response variable Y and explanatory vars χ_{1}, χ_{2}, etc.
- Loglinear models for contingency tables treat all variables as response variables, like multivariate analysis.

Ex. Survey of high school seniors (see text):

- Y_{1} : used alchohol? (yes, no)
- Y_{2} : cigarettes? (yes, no)
- Y_{3} : marijuana? (yes, no)

Interested in patterns of dependence and independence among the three variables:

- Any variables independent?
- Strength of associations?
- Interactions?
- Loglinear models treat cell counts as Poisson and use log link fcn.

Motivation: $\mathrm{In} \mathrm{I} \times \mathrm{J}$ table, X and Y are independent if

$$
\begin{aligned}
& \operatorname{Pr}(X=i, Y=j)=\operatorname{Pr}(X=i) \operatorname{Pr}(Y=j) \quad \text { for all } i, j \\
& \text { i.e., } \quad \pi_{i j}=\pi_{i+} \pi_{+j}
\end{aligned}
$$

For expected cell frequencies,

$$
\begin{array}{rlrl}
\mu_{i j} & =n \pi_{i j} & & \text { (general form) } \\
& =n \pi_{i+} \pi_{+j} & \text { (under independence) } \\
\Longrightarrow & \log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}
\end{array}
$$

λ_{i}^{X} : effect of classification in row $i \quad$ ($I-1$ nonredundant parameters)
λ_{j}^{Y} : effect of classification in col j ($\mathrm{J}-1$ nonredundant parameters)
Loglinear model of independence: treats X and Y symmetrically. Unlike, e.g., logistic regr where $\mathrm{Y}=$ response, $\mathrm{X}=$ explanatory.

Note: For a Poisson loglinear model,
$\mathrm{df}=$ number of Poisson counts - number of parameters
Here number of Poisson counts $=$ number cells in table.
Think of dummy variables for each variable.
Number of dummies is one less than number of levels of variable. Products of dummy variables correspond to "interaction" terms.

For an I \times J contingency table:

- Indep. model: $\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y} \quad(d f=(I-1)(J-1))$
no. cells $=\mathrm{IJ}$
no. parameters $=1+(\mathrm{I}-1)+(\mathrm{J}-1)=\mathrm{I}+\mathrm{J}-1$

$$
\mathrm{df}=\mathrm{IJ}-(\mathrm{I}+\mathrm{J}-1)=(\mathrm{I}-1)(\mathrm{J}-1)
$$

- Saturated model: $\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y} \quad(d f=0)$

Parameter		Nonredundant
λ		1
λ_{i}^{X}	$\mathrm{I}-1$	
λ_{i}^{Y}	$\mathrm{~J}-1$	
$\lambda_{i j}^{X Y}$		$(\mathrm{I}-1)(\mathrm{J}-1)$
	Total: IJ	

Note: Log-odds-ratio comparing levels i and i^{\prime} of X and j and j^{\prime} of Y is

$$
\begin{aligned}
\log \left(\frac{\mu_{i j} \mu_{i^{\prime} j^{\prime}}}{\mu_{i j^{\prime}} \mu_{i^{\prime} j}}\right)= & \log \mu_{i j}+\log \mu_{i^{\prime} j^{\prime}}-\log \mu_{i j^{\prime}}-\log \mu_{i^{\prime} j} \\
= & \left(\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y}\right)+\left(\lambda+\lambda_{i^{\prime}}^{X}+\lambda_{j^{\prime}}^{Y}+\lambda_{i^{\prime} j^{\prime}}^{X Y}\right) \\
& -\left(\lambda+\lambda_{i}^{X}+\lambda_{j^{\prime}}^{Y}+\lambda_{i j^{\prime}}^{X Y}\right)-\left(\lambda+\lambda_{i^{\prime}}^{X}+\lambda_{j}^{Y}+\lambda_{i^{\prime} j}^{X Y}\right) \\
= & \lambda_{i j}^{X Y}+\lambda_{i^{\prime} j^{\prime}}^{X Y}-\lambda_{i j^{\prime}}^{X Y}-\lambda_{i^{\prime} j_{j}}^{X Y} .
\end{aligned}
$$

For the independence model this is 0 , and the odds-ratio is $e^{0}=1$.
For the saturated model, the odds-ratio, expressed in terms of of the parameters of the loglinear model, is

$$
\frac{\mu_{i j} \mu_{i^{\prime} j^{\prime}}}{\mu_{i j^{\prime}} \mu_{i^{\prime} j}}=\exp \left\{\lambda_{i j}^{X Y}+\lambda_{i^{\prime} j^{\prime}}^{X Y}-\lambda_{i j^{\prime}}^{X Y}-\lambda_{i^{\prime} j}^{X Y}\right\}
$$

Substituting the MLEs of the saturated model (perfect fit) just reproduces the empirical odds ratio $\frac{n_{i i^{\prime}} n_{j j^{\prime}}}{n_{i j^{\prime}} n_{i^{\prime} j}}$.

Income and Job Satisfaction

Income	Job Satisfaction			
	Dissat	Little	Moderate	Very
$<5 \mathrm{~K}$	2	4	13	3
$5 \mathrm{~K}-15 \mathrm{~K}$	2	6	22	4
$15 \mathrm{~K}-25 \mathrm{~K}$	0	1	15	8
$>25 \mathrm{~K}$	0	3	13	8

Originally used Pearson's chisquare test: $X^{2}=11.5, \mathrm{df}=9\left(\mathrm{G}^{2}=13.5\right)$.
With income scores $x=3,10,20,35$, used VGAM package to fit baseline category logit model

$$
\log \left(\frac{\pi_{j}}{\pi_{4}}\right)=\alpha_{j}+\beta_{j} x, \quad j=1,2,3 .
$$

and later, cumulative logit model

$$
\operatorname{logit}[\operatorname{Pr}(Y \leqslant j)]=\alpha_{j}+\beta x, \quad j=1,2,3 .
$$

Using dummy variables, the model

$$
\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{I}+\lambda_{j}^{S}
$$

can be expressed as

$$
\log \left(\mu_{i j}\right)=\lambda+\lambda_{1}^{\mathrm{I}} z_{1}+\lambda_{2}^{\mathrm{I}} z_{2}+\lambda_{3}^{\mathrm{I}} z_{3}+\lambda_{1}^{S} w_{1}+\lambda_{2}^{S} w_{2}+\lambda_{3}^{S} w_{3}
$$

where we take $\lambda_{4}^{I}=\lambda_{4}^{S}=0$ and

$$
\begin{array}{ll}
z_{1}= \begin{cases}1, & \text { inc }<5 K, \\
0, & \text { otherwise },\end{cases} & w_{1}= \begin{cases}1, & \text { very dissat } \\
0, & \text { otherwise },\end{cases} \\
z_{2}= \begin{cases}1, & 5 \mathrm{~K} \leqslant \text { inc }<15 K, \\
0, & \text { otherwise },\end{cases} & w_{2}= \begin{cases}1, & \text { a little sat. } \\
0, & \text { otherwise },\end{cases} \\
z_{3}= \begin{cases}1, & 15 \mathrm{~K} \leqslant \text { inc }<25 K, \\
0, & \text { otherwise },\end{cases} & w_{3}= \begin{cases}1, & \text { moderately sat. } \\
0, & \text { otherwise },\end{cases}
\end{array}
$$

> sattab
Job Satisfaction

Income	Dissat	Little	Moderate	Very
$<5 \mathrm{~K}$	2	4	13	3
$5 \mathrm{~K}--15 \mathrm{~K}$	2	6	22	4
$15 \mathrm{~K}--25 \mathrm{~K}$	0	1	15	8
$>25 \mathrm{~K}$	0	3	13	8

> jobsat <- as.data.frame(sattab)
> names(jobsat)
[1] "Income"
"Job.Satisfaction"
[3] "Freq"
> names(jobsat)[2] <- "Satis"

	Income	Satis Freq	
1	$<5 \mathrm{~K}$	Dissat	2
2	$5 \mathrm{~K}--15 \mathrm{~K}$	Dissat	2
3	$15 \mathrm{~K}--25 \mathrm{~K}$	Dissat	0
4	$>25 \mathrm{~K}$	Dissat	0
5	$<5 \mathrm{~K}$	Little	4
6	$5 \mathrm{~K}--15 \mathrm{~K}$	Little	6
7	$15 \mathrm{~K}--25 \mathrm{~K}$	Little	1
8	$>25 \mathrm{~K}$	Little	3
9	$<5 \mathrm{~K}$	Moderate	13
10	$5 \mathrm{~K}--15 \mathrm{~K}$	Moderate	22
11	$15 \mathrm{~K}--25 \mathrm{~K}$	Moderate	15
12	$>25 \mathrm{~K}$	Moderate	13
13	$<5 \mathrm{~K}$	Very	3
14	$5 \mathrm{~K}--15 \mathrm{~K}$	Very	4
15	$15 \mathrm{~K}--25 \mathrm{~K}$	Very	8
16	$>25 \mathrm{~K}$	Very	8

> levels(jobsat\$Income)
[1] "<5K"
"5K--15K"
"15K--25K" ">25K"
> levels(jobsat\$Satis)
[1] "Dissat" "Little" "Moderate" "Very"
> options(contrasts=c("contr.SAS","contr.poly"))
> jobsat.indep <-
glm(Freq ~ Income + Satis, family=poisson, data=jobsat)
> summary(jobsat.indep)

Call:
glm(formula = Freq ~ Income + Satis, family = poisson, data

Deviance Residuals:

Min	1Q	Median	3Q	Max
-1.4547	-1.0228	0.0152	0.5880	1.0862

Coefficients:

| | | Estimate | Std. Error z value $\operatorname{Pr}(>\|z\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | $1.67 \mathrm{e}+00$ | $2.75 \mathrm{e}-01$ | 6.07 | $1.3 \mathrm{e}-09$ |
| Income<5K | $-8.70 \mathrm{e}-02$ | $2.95 \mathrm{e}-01$ | -0.29 | 0.7682 |
| Income5K--15K | $3.48 \mathrm{e}-01$ | $2.67 \mathrm{e}-01$ | 1.31 | 0.1914 |
| Income15K--25K | $3.91 \mathrm{e}-15$ | $2.89 \mathrm{e}-01$ | 0.00 | 1.0000 |
| SatisDissat | $-1.75 \mathrm{e}+00$ | $5.42 \mathrm{e}-01$ | -3.23 | 0.0012 |
| SatisLittle | $-4.96 \mathrm{e}-01$ | $3.39 \mathrm{e}-01$ | -1.46 | 0.1431 |
| SatisModerate | $1.01 \mathrm{e}+00$ | $2.44 \mathrm{e}-01$ | 4.14 | $3.5 \mathrm{e}-05$ |

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 90.242 on 15 degrees of freedomResidual deviance: 13.467 on 9 degrees of freedomAIC: 77.07
Number of Fisher Scoring iterations: 5
NA> chisqstat(jobsat.indep)
[1] 11.524
> jobsat.saturated <- update(jobsat.indep, . ~ Income*Satis) > anova(jobsat.indep, jobsat.saturated, test="Chisq")

Analysis of Deviance Table
Model 1: Freq ~ Income + Satis
Model 2: Freq ~ Income + Satis + Income:Satis
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>$ Chi)
1
> \#\# Set contrasts back to R defaults
> options(contrasts=c("contr.treatment","contr.poly"))

Loglinear Models for Three-Way Tables
Here two-factor terms represent conditional log odds ratios at a fixed level of the third variable.

Ex. $2 \times 2 \times 2$ table. Consider the model
$\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}$.

- X and Y are conditionally independent, given Z :

$$
\log \left(\theta_{X Y(k)}\right)=0 \Longrightarrow \theta_{X Y(k)}=1
$$

- the $X-Z$ odds ratio is the same at all levels of Y :

$$
\log \left(\theta_{X(j) Z}\right)=\underbrace{\lambda_{11}^{X Z}+\lambda_{22}^{X Z}-\lambda_{12}^{X Z}-\lambda_{21}^{X Z}}_{\text {does not depend on } j}
$$

Similarly, Y - Z odds ratio same at all levels of X . Model has no three-factor interaction.

Ex. Consider the loglinear model

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z} .
$$

Each pair of variables is conditionally dependent, but association (as measured by odds ratios) is the same at all levels of third variable.

Called the model of homogeneous association (or model of no three-factor interaction; denoted (XY, XZ, YZ).

Ex. Survey of 2276 high school seniors.

> teens <-

```
array(c(911, 44,3,2, 538,456,43, 279),
dim = c(2,2,2) ,
dimnames = list(cigs=c("yes","no"),
alc=c("yes","no"), mj=c("yes","no")))
```

> \#\# Next line just for Table 7.4. Not required.
> teens <- aperm(teens, c $(3,1,2)$)
$>$ teens <- as.table(teens)
> ftable(teens, row.vars=c("alc","cigs"))
mj yes no
alc cigs

yes	yes	911	538
	no	44	456
no	yes	3	43
	no	2	279

> teens.df <- as.data.frame(teens)
> teens.df

$>$ teens.AC.AM.CM <-

$$
\begin{gathered}
\text { glm(Freq }{ }^{\sim} \text { alc*cigs }+ \text { alc*mj }+ \text { cigs*mj, } \\
\text { family=poisson, data=teens.df) }
\end{gathered}
$$

> \#\#\# Another way:
> \#\# teens.AC.AM.CM <-
> \#\# glm(Freq ~ alc*cigs*mj - alc:cigs:mj,
> \#\# family=poisson, data=teens.df)
> summary(teens.AC.AM.CM)

```
glm(formula = Freq ~ alc * cigs + alc * mj + cigs * mj, fami
    data = teens.df)
```

Coefficients:

Estimate Std. Error z value	$\operatorname{Pr}(>\|z\|)$		
5.6334	0.0597	94.36	$<2 \mathrm{e}-16$
0.4877	0.0758	6.44	$1.2 \mathrm{e}-10$
-1.8867	0.1627	-11.60	$<2 \mathrm{e}-16$
-5.3090	0.4752	-11.17	$<2 \mathrm{e}-16$
2.0545	0.1741	11.80	$<2 \mathrm{e}-16$
2.9860	0.4647	6.43	$1.3 \mathrm{e}-10$
2.8479	0.1638	17.38	$<2 \mathrm{e}-16$

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 2851.46098 on 7 degrees of freedom Residual deviance: 0.37399 on 1 degrees of freedom AIC: 63.42

The (AC,AM,CM) model fits well: $\mathrm{G}^{2}=0.37$ (and $\mathrm{X}^{2}=0.4$) on 1 df .
> df.residual(teens.AC.AM.CM)
[1] 1
> deviance(teens.AC.AM.CM)
[1] 0.37399
> chisqstat(teens.AC.AM.CM)
[1] 0.4011

Note: As a LRT, goodness-of-fit on previous slide is comparing to saturated model.
> teens.ACM <- update(teens.AC.AM.CM, . ~ alc*cigs*mj)
> anova(teens.AC.AM.CM, teens.ACM, test="Chisq")
Analysis of Deviance Table

Model 1: Freq ~ alc * cigs + alc * mj + cigs * mj
Model 2: Freq ~ alc + cigs + mj + alc:cigs + alc:mj + cigs:m
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
10.374

2
$\begin{array}{lllll}0 & 0.000 & 1 & 0.374 & 0.54\end{array}$

And none of the interaction terms can be dropped:
> drop1(teens.AC.AM.CM, test="Chisq")

```
Single term deletions
```

Model:

```
Freq ~ alc * cigs + alc * mj + cigs * mj
```

 Df Deviance AIC LRT Pr(>Chi)
 <none>
$0 \quad 63$

alc:cigs	1	188	249	187	$<2 \mathrm{e}-16$
alc:mj	1	92	153	92	$<2 \mathrm{e}-16$
cigs:mj	1	497	558	497	$<2 \mathrm{e}-16$

Note: drop1 () does LRTs comparing to simpler models. Test statistic is the usual
$-2\left(L_{0}-L_{1}\right)=$ deviance $_{0}-$ deviance $_{1}$
and df is difference in number of nonredundant parameters.
E.g., to test for conditional independence of A and C given M :
> teens.AM.CM <- update(teens.AC.AM.CM, . ~ alc*mj + cigs*mj)
> anova(teens.AM.CM, teens.AC.AM.CM, test="Chisq")
Analysis of Deviance Table
Model 1: Freq ~ alc + mj + cigs + alc:mj + mj:cigs
Model 2: Freq ~ alc * cigs + alc * mj + cigs * mj
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
2187.8

2
10.4
$187<2 e-16$

Table 7.4 gives fitted values for several different models fit to these data.
> teens.AM.CM <update(teens.AC.AM.CM, . ~ alc*mj + cigs*mj)
> teens.AC.M <update(teens.AC.AM.CM, . ~ alc*cigs + mj)
> teens.A.C.M <update(teens.AC.AM.CM, . ~ alc + cigs + mj)
> teens.ACM <update(teens.AC.AM.CM, . ~ alc*cigs* mj)
> table. 7.4 <-
data.frame(predict(teens.A.C.M, type="response"))
> table.7.4 <-
cbind(table.7.4, predict(teens.AC.M, type="response"))
> table.7.4 <cbind(table.7.4, predict(teens.AM.CM, type="response"))
> table. 7.4 <cbind(table.7.4, predict(teens.AC.AM.CM, type="response"))
> table.7.4 <cbind(table.7.4, predict(teens.ACM, type="response"))
> table.7.4 <- signif(table.7.4, 3)
> table. 7.4 <cbind(teens.df[, c("alc", "cigs", "mj")],
table.7.4)
> names(table.7.4) <-

$$
\begin{aligned}
& \text { c("alc", "cigs", "mj", } \\
& \text { "(A, C, M)", "(AC, M)", "(AM, CM)", " (AC , AM, CM)", " (ACM)") }
\end{aligned}
$$

> table. 7.4

| | | | | | | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| alc cigs mj | $(\mathrm{A}, \mathrm{C}, \mathrm{M})$ | $(\mathrm{AC}, \mathrm{M})$ | $(\mathrm{AM}, \mathrm{CM})$ | $(\mathrm{AC}, \mathrm{AM}, \mathrm{CM})$ | (ACM) | | |
| 1 yes yes yes | 540.0 | 611.0 | 909.00 | 910.00 | 911 | | |
| 2 yes yes no | 740.0 | 838.0 | 439.00 | 539.00 | 538 | | |
| 3 yes no yes | 282.0 | 211.0 | 45.80 | 44.60 | 44 | | |
| 4 | yes | no no | 387.0 | 289.0 | 555.00 | 455.00 | 456 |
| 5 | no | yes yes | 90.6 | 19.4 | 4.76 | 3.62 | 3 |
| 6 | no | yes no | 124.0 | 26.6 | 142.00 | 42.40 | 43 |
| 7 | no | no yes | 47.3 | 119.0 | 0.24 | 1.38 | 2 |
| 8 | no | no no | 64.9 | 162.0 | 180.00 | 280.00 | 279 |

In (AC,AM,CM) model, AC odds-ratio is the same at each level of M. With $1=$ yes and $2=$ no for each variable, the estimated conditional AC odds ratio is

$$
\frac{\hat{\mu}_{11 k} \hat{\mu}_{22 k}}{\hat{\mu}_{12 k} \hat{\mu}_{21 k}}=\exp \left(\hat{\lambda}_{11}^{A C}+\hat{\lambda}_{22}^{A C}-\hat{\lambda}_{12}^{A C}-\hat{\lambda}_{21}^{A C}\right)=e^{2.0545}=7.8
$$

$\mathrm{A} 95 \% \mathrm{Cl}$ is

$$
e^{2.05 \pm(1.96)(0.174)}=\left(e^{1.71}, e^{2.40}\right)=(5.5,11.0)
$$

The commons odds-ratio is reflected in the fitted values for the model:

$$
\frac{(910)(1.38)}{(44.6)(3.62)}=7.8 \quad \frac{(539)(280)}{(455)(42.4)}=7.8
$$

Similar results hold for AM and CM conditional odds-ratios in this model.

In (AM,CM) model, $\lambda_{i j}^{A C}=0$, and conditional AC odds-ratio (given M) is $e^{0}=1$ at each level of M, i.e., A and C are conditionally indep. given M. Again, this is reflected in the fitted values for this model.

$$
\frac{(909)(0.24)}{(45.8)(4.76)}=1 \quad \frac{(439)(180)}{(555)(142)}=1
$$

The AM odds-ratio is not 1 , but it is the same at each level of C :

$$
\frac{(909)(142)}{(439)(4.76)}=61.87 \quad \frac{(45.8)(180)}{(555)(0.24)}=61.87
$$

Similarly, the CM odds-ratio is the same at each level of A:

$$
\frac{(909)(555)}{(439)(45.8)}=25.14 \quad \frac{(4.76)(180)}{(142)(0.24)}=25.14
$$

Standardized residuals may help understand lack of fit. Text uses standardized Pearson residuals.
rstandard() computes standardized deviance resids. by default but has type = "pearson" option.

See Section 7.2.2 for example and discussion.

Note:

- Loglinear models extend to any number of dimensions.
- Loglinear models treat all variables symmetrically.

Logistic regression models treat Y as response and other variables as explanatory. More natural approach when there is a single response.

Mosaic Plots: Two-Way Tables

Job Satisfaction

The previous plot was produced by the commands
> library(vcd)
> mosaic(sattab)

The same plot could have been produced with
> mosaic(~ Income + Satis, data = jobsat)

You might prefer to view the plot with a different orientation:
> mosaic(sattab, split_vertical = TRUE)

Income

Recall:

> (sat.chisq <- chisq.test(sattab))

Pearson's Chi-squared test

data: sattab
X-squared = 11.524, df = 9, p-value = 0.2415
> round(sat.chisq\$expected, 1)
Job Satisfaction

Income	Dissat	Little	Moderate	Very
<5K	0.8	3.0	13.3	4.9
5K--15K	1.3	4.6	20.6	7.5
$15 \mathrm{~K}--25 \mathrm{~K}$	0.9	3.2	14.5	5.3
$>25 \mathrm{~K}$	0.9	3.2	14.5	5.3

> mosaic(sattab, split_vertical = TRUE, main = "Observed")
> mosaic(sattab, split_vertical = TRUE, type = "expected",
main = "Expected")

Observed
Income

Expected

Income

> round(sat.chisq\$stdres, 1)

Job Satisfaction				
Income	Dissat	Little	Moderate	Very
$<5 \mathrm{~K}$	1.4	0.7	-0.2	-1.1
$5 \mathrm{~K}--15 \mathrm{~K}$	0.8	0.9	0.6	-1.8
$15 \mathrm{~K}--25 \mathrm{~K}$	-1.1	-1.5	0.2	1.5
$>25 \mathrm{~K}$	-1.1	-0.2	-0.7	1.5

Same as the standardized (i.e., "adjusted") Pearson residuals from fitting loglinear model of independence:
> round(rstandard(jobsat.indep, type = "pearson"), 1)

1	2	3	4	5	6	7	8	9	10	11
1.4	0.8	-1.1	-1.1	0.7	0.9	-1.5	-0.2	-0.2	0.6	0.2
12	13	14	15	16						
-0.7	-1.1	-1.8	1.5	1.5						

This example isn't the best here because Pearson's chi-square test does not provide any evidence against independence.
> mosaic(sattab, gp = shading_Friendly)
> mosaic(sattab, residuals = sat.chisq\$stdres,

$$
\begin{aligned}
& \text { gp = shading_hcl, } \\
& \text { gp_args = list }(\mathrm{p} \cdot \text { value }=\text { sat.chisq } \$ p . \text { value }, \\
& \text { interpolate }=c(2,4)))
\end{aligned}
$$

Hair and Eye Color

Data from vcd package.
> ftable(Eye ~ Sex + Hair, data = HairEyeColor)
Eye Brown Blue Hazel Green

Sex	Hair				
Male	Black	32	11	10	3
	Brown	53	50	25	15
	Red	10	10	7	7
	Blond	3	30	5	8
Female	Black	36	9	5	2
	Brown	66	34	29	14
	Red	16	7	7	7
	Blond	4	64	5	8

Hair and Eye Color (ctd)

Collapsing across Sex.
> haireye <- margin.table(HairEyeColor, 1:2)
> haireye
Eye

Hair Brown Blue Hazel Green

Black	68	20	15	5
Brown	119	84	54	29
Red	26	17	14	14
Blond	7	94	10	16

> (he.chisq <- chisq.test(haireye))
Pearson's Chi-squared test
data: haireye
X-squared $=138.29, \mathrm{df}=9, \mathrm{p}$-value $<2.2 \mathrm{e}-16$

Hair and Eye Color (ctd)

> mosaic(haireye, residuals = he.chisq\$stdres,
gp = shading_hcl,
gp_args = list(p.value = he.chisq\$p.value, interpolate = c(2,4)),
labeling_args = list(abbreviate_labs = c(Eye = 3)))

Eye

Teen Survey Data

cigs
yes
no

The previous plot was produced by the commands
> mosaic(teens)
Compare to
> ftable(round(prop.table(teens), 3))
alc yes no
mj cigs

yes	yes	0.400	0.001
	no	0.019	0.001
no	yes	0.236	0.019
	no	0.200	0.123

The same plot could have been produced by either of the commands:
> mosaic (~ mj + cigs + alc, data = teens)
> mosaic(~ mj + cigs + alc, data = teens.df)
Changing the order of the terms in the formula has the expected effect.

Standardized residuals from two loglinear models.

```
> table.7.8 <- teens.df[,c("alc","cigs","mj","Freq")]
> table.7.8 <- cbind(table.7.8,
    round(predict(teens.AM.CM, type = "response"),1))
> table.7.8 <- cbind(table.7.8,
    round(rstandard(teens.AM.CM, type = "pearson"),2))
> table.7.8 <- cbind(table.7.8,
    round(predict(teens.AC.AM.CM, type = "response"),1))
> table.7.8 <- cbind(table.7.8,
    round(rstandard(teens.AC.AM.CM, type = "pearson"),2))
> names(table.7.8) <-
    c("A", "C", "M", "Obs" ,"(AM, CM)", "StdRes",
        "(AC, AM, CM)", "StdRes")
```

> table. 7.8

| | A | C M Obs | (AM, CM) | StdRes | (AC, AM, CM) | StdRes |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 yes yes yes 911 | 909.2 | 3.7 | 910.4 | 0.63 | | |
| 2 yes yes no 538 | 438.8 | 12.8 | 538.6 | -0.63 | | |
| 3 yes no yes | 44 | 45.8 | -3.7 | 44.6 | -0.63 | |
| 4 yes no no 456 | 555.2 | -12.8 | 455.4 | 0.63 | | |
| 5 | no yes yes | 3 | 4.8 | -3.7 | 3.6 | -0.63 |
| 6 | no yes no | 43 | 142.2 | -12.8 | 42.4 | 0.63 |
| 7 | no no yes | 2 | 0.2 | 3.7 | 1.4 | 0.63 |
| 8 | no no no 279 | 179.8 | 12.8 | 279.6 | -0.63 | |

- Number nonredundant standardized residuals $=$ residual df.
- Model (AM,CM): Residual df = 2
- Model (AC,AM,CM): Residual df $=1$
vcdExtra package works from fitted loglinear model. Uses unadjusted Pearson residuals, or optionally, standardized deviance residuals.

Here is the default, using unadjusted Pearson residuals:
> library(vcdExtra)
> mosaic(teens.AM.CM, ~mj + cigs + alc)
> mosaic(teens.AC.AM.CM, ~mj + cigs + alc)

With the standardized deviance residuals:

> mosaic(teens.AM.CM, ~ mj + cigs + alc, residuals_type = "rstandard")
> mosaic(teens.AC.AM.CM, ~mj + cigs + alc,
residuals_type = "rstandard")

And finally, with the standardized Pearson residuals (note that the title on the legend is not correct):

```
> mosaic(teens.AM.CM, ~ mj + cigs + alc,
    residuals = rstandard(teens.AM.CM, type = "pearson"))
```

> mosaic(teens.AC.AM.CM, ~mj + cigs + alc,
residuals = rstandard(teens.AC.AM.CM, type = "pearson"))

I have suggested a patch to make the selection of Pearson vs deviance and non-standardized vs standardized residuals more straightforward.

7.3 The Loglinear-Logit Connection

The loglinear model (XY, XZ, YZ), i.e.,

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z},
$$

> treats variables symmetrically

- permits association for each pair of vars.
- allows no three-factor association (i.e., implies homogeneous association)

Suppose Y is binary and let

$$
\pi_{i k}=P(Y=1 \mid X=i, Z=k)
$$

Treat Y as response. If model (XY, XZ, YZ) holds, then

$$
\begin{aligned}
& \operatorname{logit}\left(\pi_{i k}\right)= \log \left(\frac{\pi_{i k}}{1-\pi_{i k}}\right)=\log \left(\frac{P(Y=1 \mid X=i, Z=k)}{P(Y=2 \mid X=i, Z=k)}\right) \\
&= \log \left(\mu_{i 1 k}\right)-\log \left(\mu_{i 2 k}\right) \\
&=\left(\lambda+\lambda_{i}^{X}+\lambda_{1}^{Y}+\lambda_{k}^{Z}+\lambda_{i 1}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{1 k}^{Y Z}\right) \\
&-\left(\lambda+\lambda_{i}^{X}+\lambda_{2}^{Y}+\lambda_{k}^{Z}+\lambda_{i 2}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{2 k}^{Y Z}\right) \\
&= \underbrace{\left(\lambda_{1}^{Y}-\lambda_{2}^{Y}\right)}_{\alpha}+\underbrace{\left(\lambda_{i 1}^{X Y}-\lambda_{i 2}^{X Y}\right)}_{\beta_{i}^{X}}+\underbrace{\left(\lambda_{1 k}^{Y Z}-\lambda_{2 k}^{Y Z}\right)}_{\beta_{k}^{Z}} \\
&=\alpha+\beta_{i}^{X}+\beta_{k}^{Z}
\end{aligned}
$$

i.e., logit model for Y has additive main effects and no interaction.

Recall the UCB admissions data.

Gender	Male
Admit	Female
Admitted Rejected Admitted Rejected	

A	512	313	89	19
B	353	207	17	8
C	120	205	202	391
D	138	279	131	244
E	53	138	94	299
F	22	351	24	317

Let $A=$ admission (yes/no) be response var. Logit model:

$$
\operatorname{logit}\left(\pi_{i k}\right)=\alpha+\beta_{i}^{\mathrm{G}}+\beta_{k}^{\mathrm{D}}
$$

The corresponding loglinear model is (AG, AD, DG):

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{A}+\lambda_{j}^{\mathrm{G}}+\lambda_{k}^{\mathrm{D}}+\lambda_{i j}^{\mathrm{AG}}+\lambda_{i k}^{A D}+\lambda_{j k}^{\mathrm{DG}}
$$

UCB Admissions (ctd)

Both models have deviance $\mathrm{G}^{2}=20.20(\mathrm{df}=5)$:
> UCB.logit <-
glm(cbind(Admitted, Rejected) ~ Gender + Dept, family = binomial, data = UCBw)
> c(deviance(UCB.logit), df.residual(UCB.logit))
[1] 20.2045 .000
> UCB. loglin <-
glm(Freq ~ Admit*Gender + Admit*Dept + Gender*Dept, family = poisson, data = UCBdf)
> c(deviance(UCB.loglin), df.residual(UCB.loglin))
[1] 20.2045 .000

UCB Admissions (ctd)

The df for testing fit are the same for each model:
Logit model Treats table as 12 indep. binomial variates on response A at 12 combinations of levels of D and G :

$$
\begin{aligned}
\text { no. obs. } & =12 \\
\text { no. param. } & =1+1+5=7 \\
\text { (residual) df } & =12-7=5
\end{aligned}
$$

Loglinear model Treats table as 24 indep. Poisson variates:

$$
\begin{aligned}
\text { no. obs. } & =24 \\
\text { no. param. } & =1+1+1+5+1+5+5=19 \\
\text { (residual) df } & =24-19=5
\end{aligned}
$$

UCB Admissions (ctd)

Controlling for D (department), estimated odds ratio for effected of G on A (odds of admission for males divided by odds for females), is

$$
\exp \left(\hat{\beta}_{1}^{G}-\hat{\beta}_{2}^{G}\right)=e^{0-0.0999}=.905
$$

Identical to

$$
\exp \left(\hat{\lambda}_{11}^{\mathrm{AG}}+\hat{\lambda}_{22}^{\mathrm{AG}}-\hat{\lambda}_{12}^{\mathrm{AG}}-\hat{\lambda}_{21}^{\mathrm{AG}}\right)=\exp (0-0.0999-0-0)
$$

> coef(UCB.logit)

(Intercept)	GenderFemale	DeptB	DeptC
0.582051	0.099870	-0.043398	-1.262598
DeptD	DeptE	DeptF	
-1.294606	-1.739306	-3.306480	

(Intercept)	AdmitRejected
6.271499	-0.582051
GenderFemale	DeptB
-1.998588	-0.403220
DeptC	DeptD
-1.577903	-1.350005
DeptE	DeptF
-2.449820	-3.137871
AdmitRejected:GenderFemale	AdmitRejected:DeptB
-0.099870	AdmitRejected:DeptD
AdmitRejected:DeptC	1.294606
1.262598	AdmitRejected:DeptF
AdmitRejected:DeptE	3.306480
1.739306	GenderFemale:DeptC
GenderFemale:DeptB	2.665133
-1.074820	GenderFemale:DeptE
GenderFemale:DeptD	2.795186
1.958324	

For a given logit model, equivalent loglinear model (same goodness of fit, df, fitted values, etc) has:

- interactions of Y with explanatory variables implied by logit model;
- and the fullest interaction term among explanatory variables

Example

$\pi=P(Y=1)$, predictors A, B, C (4-way table).
Logit model

$$
\operatorname{logit}(\pi)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}
$$

corresponds to loglinear model (AY, BY, CY, ABC).
Logit model

$$
\operatorname{logit}(\pi)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{j k}^{B C}
$$

corresponds to loglinear model (AY, BCY, ABC).

Remarks

- When there is a single binary response, it is simpler to approach data directly using logit models.
- Similar remarks hold for a multi-category response Y:
- Baseline-category logit model has a matching loglinear model.
- With a single response, it is simpler to use the baseline-category logit model.
- Loglinear models have advantage of generality - can handle multiple responses, some of which may have more than two outcome categories.

7.4 Independence Graphs and Collapsibility

Independence graph: a graphical representation for conditional independence.

- Vertices (or nodes) represent variables.
- Connected by edges: a missing edge between two variables represents a conditional independence between the variables.
- Different models may produce the same graph.
- Graphical models: subclass of loglinear models
- Within this class there is a unique model for each independence graph.
- For any group of variables having no missing edges, graphical model contains the highest order interaction term for those variables.

Independence Graphs for a 4-Way Table (Variables W, X, Y, Z)

> Model(s)
> $(W X, W Y, W Z, Y Z)$
> $(W X, W Y Z)^{*}$
(WX, WY, WZ, XZ, YZ)
(WX, XZ, WYZ)
(WXZ, WY, YZ)
(WXZ, WYZ)*
(WX, WY, WZ)*
(WX, XY, YZ)*

Graph

$W-X-Y-Z$

* Graphical models.

Independence Graphs for a 4-Way Table (ctd)

> Model(s)
> $(\mathrm{X}, \mathrm{WY}, \mathrm{WZ}, \mathrm{YZ})$
> $(\mathrm{X}, \mathrm{WYZ})^{*}$

Graph

(WX, YZ)*
$W-X \quad Y-Z$
(WX, WY, WZ, XY, XZ, YZ)
(WX, WY, WZ, XYZ)
(WX, WYZ, XYZ)
. . . many others ...
(WXYZ)*

* Graphical models.

Collapsibility Conditions for Three-Way Tables

For a three-way table, the XY marginal and conditional odds ratios are identical if either Z and X are conditonally independent or if Z and Y are conditionally independent.

- Conditions say control variable Z is either:
- conditionally independent of X given Y , as in model (XY, YZ);
> or conditionally independent of Y given X, as in ($X Y, X Z$).
- I.e., XY association is identical in the partial tables and the marginal table for models with independence graphs

$$
X-Y-Z
$$

$$
Y-X-Z
$$

or even simpler models.
$A=$ alcohol use, $C=$ cigarette use, $M=$ marijuana use.
The model of AC conditional independence, (AM, CM), has independence graph

$$
A-M-C
$$

Consider AM association, treating C as control variable. Since C is conditionally independent of A, the $A M$ conditional odds ratios are the same as the AM marginal odds ratio collapsed over C.

$$
\frac{(909.24)(142.16)}{(438.84)(4.76)}=\frac{(45.76)(179.84)}{(555.16)(0.24)}=\frac{(955)(322)}{(994)(5)}=61.9
$$

See Tables 7.4 and 7.5 , or next slide.
> \exp (coef(teens.AM.CM) [5])
alcyes:mjyes
61.873
> AM.CM.fitted <- teens
> AM.CM.fitted[,,] <- predict(teens.AM.CM, type="response")
> AM.CM.fitted[,"yes",]
alc

mj	yes	no
yes	909.24	4.7604
no	438.84	142.1596

> AM.CM.fitted[,"no",]
alc

mj	yes	no
yes	45.76	0.23958
no	555.16	179.84043

> AM.CM.fitted[,"yes",] + AM.CM.fitted[,"no",]

alc		
mj	yes	no
yes	955	5
no	994	322

Teen Survey

- Similarly, CM association is collapsible over A.
- The AC association is not collapsible, because M is conditionally dependent with both A and C in model (AM, CM).
Thus, A and C may be marginally dependent, even though conditionally independent.

$$
\begin{aligned}
& \frac{(909.24)(0.24)}{(45.76)(4.76)}=\frac{(438.84)(179.84)}{(555.16)(142.16)}=1 \\
& \frac{(1348.08)(180.08)}{(600.92)(146.92)}=2.75 \neq 1
\end{aligned}
$$

> AM.CM.fitted["yes",,]

alc		
cigs	yes	no
yes	909.24	4.76042
no	45.76	0.23958
$>$	AM.CM.fitted["no", ,]	

alc
cigs yes no
yes 438.84142 .16
no 555.16179 .84
> AM.CM.fitted["yes",,] + AM.CM.fitted["no", ,]
alc

cigs	yes	no
yes	1348.08	146.92
no	600.92	180.08

Collapsibility Conditions for Multiway Tables

If the variables in a model for a multiway table partition into three mutually exclusive subsets, A, B, C, such that B separates A and C (that is, if the model does not contain parameters linking variables from A directly to variables from C), then when the table is collapsed over the variables in C, model parameters relating variables in A and model parameters relating variables in A with variables in B are unchanged.

$$
A-B-C
$$

Teen Survey Data

> data(teens)
> ftable($\mathrm{R}+\mathrm{G}+\mathrm{M}$ ~ $\mathrm{A}+\mathrm{C}$, data = teens)

Teen Survey Data (ctd)

Text suggests loglinear model (AC, AM, CM, AG, AR, GM, GR).

The set $\{A, M\}$ separates sets $\{C\}$ and $\{G, R\}$.
l.e., C is conditionally independent of G and R given M and A.

Thus (as verified on the next slide):
Collapsing over G and R, the conditional associations between
C and M and between C and A are the same as with the model (AC, AM, CM) fitted earlier.
> teens.df <- as.data.frame(teens)
> ACM <- margin.table(teens, 1:3)
> ACM.df <- as.data.frame(ACM)
> teens.m6 <-

$\begin{array}{r} \operatorname{glm}(\text { Freq } \sim A * C+A * M+C * M+A * G+A * \\ \text { family }=\text { poisson, data }=\text { teens.df } \end{array}$			
$\begin{aligned} &>\mathrm{AC} \cdot \mathrm{AM} \cdot \mathrm{CM}<-\mathrm{glm}\left(\mathrm{Freq}^{\sim} \mathrm{A} * \mathrm{C}+\mathrm{A} * \mathrm{M}+\mathrm{C} * \mathrm{M},\right. \\ &\text { family }=\text { poisson, data }=\mathrm{ACM} \cdot \mathrm{df}) \end{aligned}$			
> coef (teens			
(Intercept)	ANo	CNo	MNo
5.97841	-5.75073	-3.01575	-0.38955
GMale	ROther	ANo: CNo	ANo:MNo
0.13584	-2.66305	2.05453	3.00592
CNo : MNo	ANo: GMale	ANo:ROther	MNo: GMale
2.84789	0.29229	0.59346	-0.26929

GMale:ROther
0.12619
> coef(AC.AM.CM)

(Intercept)	ANo	CNo	MNo
6.81387	-5.52827	-3.01575	-0.52486
ANo: CNo	ANo:MNo	CNo:MNo	
2.05453	2.98601	2.84789	

Exam 2: Time and Place

Tuesday, Apr 24, 2012
8:30 a.m. - 10:25 a.m.
Room 100 Griffin-Floyd Hall (FLO 100)

Exam 2 Review: Building Logistic Regression Models

Model Selection

- LR tests to compare nested models.
> $-2\left(\mathrm{~L}_{0}-\mathrm{L}_{1}\right)=$ deviance $_{0}-$ deviance $_{1}$
- df = diff. in no. nonredundant params $=$ diff. in residual df's
- Wald tests can also be used, but LR generally preferred.
- AIC.
- Measures of predictive power.
- Classification table (a.k.a., confusion matrix).
- Cross-validation.
- ROC curve, concordance index (area under ROC curve).
- Correlation between Y and $\hat{\pi}$ (meh).
- Multicollinearity (correlated explanatory variables) problematic (big SEs, hard to pick model).
- Automated backward elimination or forward selection generally not recommended (multiple testing).
- Parsimony (simplicity) good, but use care and judgement in choosing model. Keep research questions and subject area expertise in mind.

Exam 2 Review: Building Logistic Regression Models Model Checking

- Goodness-of-fit tests
- X^{2} (chi-square statistic) or G^{2} (deviance)
- Compares fitted model to saturated model (e.g, the data).
- $\mathrm{df}=$ num. binomials - num. model params
- Use for contingency tables with few expected counts <5.
- For "sparse" data, chi-square approx. poor for X^{2} and G^{2}. May try grouping observations to reduce sparsity:
- by partitioning numeric predictor(s). E.g., for horseshoe crab width,

Range	$20-24$	$24-26$	$26-28$	$28-34$
Score	22	25	27	31

- by partitioning $\hat{\pi}$ (Hosmer-Lemeshow)
- Use LR test to check whether fit improves significantly when other predictors or interactions are added.
- LR test ok even when deviance alone invalid for gof (sparse data).
- Standardized residuals.
- Residual standardized by dividing by SE.
- Examine where lack of fit occurs.
- Values <-2 or >2 suggest lack of fit in small tables.
- Values <-3 or >3 very strong evidence for lack of fit.
- Sparse data and/or too many terms in model may lead to
- infinite MLEs
- very large SEs
- bad Wald tests and Cls

Exam 2 Review: Baseline-Category Logit Model

For response Y with J > 2 categories.

$$
\pi_{j}=\operatorname{Pr}(Y=j), \quad j=1, \ldots, J .
$$

Model:

$$
\log \left(\frac{\pi_{j}}{\pi_{\mathrm{J}}}\right)=\alpha_{j}+\beta_{j} x, \quad j=1,2, \ldots, J-1 .
$$

Separate set of parameters $\left(\alpha_{j}, \beta_{j}\right)$ for each logit.

- Used for nominal response.
- Ok for ordinal response, but ignores ordering.
- Choice of category for baseline not important.
- Usual inferential procedures apply
- X^{2} and/or G^{2} for gof in contingency tables.
- LR tests.
- Wald tests and CIs.
- Estimated probs calculated from

$$
\begin{aligned}
\pi_{j} & =\frac{e^{\alpha_{j}+\beta_{j} x}}{1+e^{\alpha_{1}+\beta_{1} x}+\cdots+e^{\alpha_{J-1}+\beta_{J-1 x}}}, \quad j=1,2, \ldots, J-1, \\
\pi_{J} & =\frac{1}{1+e^{\alpha_{1}+\beta_{1} x}+\cdots+e^{\alpha_{J-1}+\beta_{J-1} x}}
\end{aligned}
$$

Exam 2 Review: Cumulative Logit Model

For ordinal response Y with $\mathrm{J}>2$ categories.
Model:

$$
\operatorname{logit}[\operatorname{Pr}(Y \leqslant j)]=\alpha_{j}+\beta x, \quad j=1, \ldots, J-1
$$

- Separate intercept α_{j} for each cumulative logit
- Same slope β for each cumulative logit
- $e^{\beta}=$ multiplicative effect of 1 -unit increase in x on odds that $(Y \leqslant j)$ (instead of $(Y>j)$).
- Reversing ordering of Y changes sign of β.
- Usual inferential methods apply. Takes avantage of ordering in Y.

Exam 2 Review: Models for Matched Pairs McNemar's Test

Two binary responses from each subject or matched pair. E.g.,

- measure response at two different times
- husband and wife answer same question

Simplest kind of dependent response.

Resp 2

\vee Want to test $\mathrm{H}_{0}: \pi_{1+}=\pi_{+1}$ (marginal homogeneity).

- McNemar's test:

$$
z=\frac{n_{12}-n_{21}}{\sqrt{n_{12}+n_{21}}} \tilde{H}_{0} N(0,1) \quad\left(\text { or } \quad z^{2}=\frac{\left(n_{12}-n_{21}\right)^{2}}{n_{12}+n_{21}} \tilde{H}_{0} x_{1}^{2}\right)
$$

$>$ Cl for $\pi_{1+}-\pi_{+1}$

$$
\begin{aligned}
& p_{1+}-p_{+1}=\frac{n_{1+}}{n}-\frac{n_{+1}}{n} \\
& S E=\frac{1}{n} \sqrt{n_{12}+n_{21}-\frac{\left(n_{12}-n_{21}\right)^{2}}{n}}
\end{aligned}
$$

Exam 2 Review: Measuring Agreement Suppose rating on a 4-point scale.

Cohen's kappa measures agreement as departure from independence in direction of perfect agreement:

$$
k=\frac{\operatorname{Pr}(\text { agree })-\operatorname{Pr}(\text { agreelindep })}{1-\operatorname{Pr}(\text { agree })}=\frac{\sum_{i} \pi_{i i}-\sum_{i} \pi_{i+} \pi_{+i}}{1-\sum_{i} \pi_{i+} \pi_{+i}}
$$

> $\mathrm{k}=0$ if agreement only equals that expected under independence.

- $k=1$ if perfect agreement.

Exam 2 Review: Generalized Estimating Equations (GEE)

GEE used for correlated responses (repeated measurements/clustered data).

- Specify (marginal) model for individual responses in usual way.
- Select a "working correlation" matrix (independence, exchangeable, etc).
- GEE parameter estimates consistent even if working correlation structure misspecified.
- (Robust) standard errors adjusted to refilect actual observed depedendence, even if form of working correlation is wrong.
- "Quasi-likelihood" method. No particular form assumed for joint distribution of responses.

Exam 2 Review: Random Effects Models (GLMM)

Random (or mixed) effects models also useful for correlated responses.

- Add subject specific terms to model.
- Subject specific terms modeled as unobserved random variables (random effects).
- Usually assume random effects follow $\mathrm{N}\left(0, \sigma^{2}\right)$ distribution, σ^{2} unknown.
- $\sigma^{2}=0$ means responses independent (not usually expected with repeated measures).

Exam 2 Review: Contrasting GEE and GLMM

In a repeated measures context:

- GLMM is a conditional (subject specific) approach: fixed effect β represents effect of change in x on an individual subject's response.
- GEE models marginal effects: β represents population average effect of changing x.
- When σ^{2} large in GLMM (or responses highly correlated in GEE), fixed effects coefficients (β 's) in conditional model (GLMM) usually larger in magnitude than in marginal model (GEE).
- GLMM completely specifies joint distribution of responses: likelihood methods apply.
- GEE does not assume a specific form for the distribution of responses: not a likelihood-based method.

Exam 2 Review: Loglinear Models

Used to study dependence structure in contingency tables.

- Multivariate analysis for contingency tables:
- All variables treated on an equal footing.
- No distinction between response and explanatory variables.
- Loglinear models are fit by treating cell frequencies as independent Poisson responses.
E.g., for $\mathrm{I} \times \mathrm{J} \times \mathrm{K}$ three-way table:
- Variable X has I levels, Y has J levels, Z has K levels.
- Treat $n_{i j k}, 1 \leqslant i \leqslant I, 1 \leqslant j \leqslant J, 1 \leqslant k \leqslant K$ as indep. Poisson counts.
- Fit Poisson GLM with log link on $\mu_{i j k}$, with $n_{i j k}$ as response, and X, Y, Z as predictors, generally with interactions.
- Use LRT to compare nested models.
- Use X^{2} or G^{2} to test goodness-of-fit.
- Looking for simplest model that explains data adequately.
- Don't depend only on formal tests: statistically significant terms may be practically unimportant (see Section 7.2.8).

Some models for I $\times \mathrm{J} \times \mathrm{K}$ three-way table:

- (XYZ)
$\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}+\lambda_{i j k}^{X Y Z}$
- Saturated model, fits cell counts perfectly.
- Residual df $=0$.
- (XY, XZ, YZ)

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}
$$

- homogeneous assoc (no 3-factor interaction): conditional odds-ratio for any pair of variables is constant across levels of 3rd var.
- Residual df $=(\mathrm{I}-1)(\mathrm{J}-1)(\mathrm{K}-1)$.
- (XZ, YZ)

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}
$$

- X and Y condionally independent given Z .
- Homogeneous XZ association. Homogeneous YZ association.
- Residual df $=(\mathrm{I}-1)(\mathrm{J}-1) \mathrm{K}$.
- (XY, Z)

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}
$$

- Z independent of X and Y .
- Residual df $=(\mathrm{IJ}-1)(\mathrm{K}-1)$.

Loglinear model related topics:

- Mosaic plots.
- Logit-loglinear connection.
- Independence graphs and collapsibility conditions.

Small-Area Estimation of Binomial Proportions

Wish to estimate parameters for a large number of geographical areas when the individual areas may have relatively few observations.
E.g., wish to estimate county-level rates of health ins. coverage from a national or statewide survey. Most counties have few observations.

One approach:

- Fit a random effects model treating each small area as a cluster.
- Estimate (or "predict") random effect(s) for each small area using the mode of its (estimated) conditional distribution given the data.
- Combine with estimates of fixed effects to estimate (or "predict") small-area means or proportions.

Simulated survey of 2000 voters. For each state i (including DC):
$\mathrm{T}_{\mathrm{i}}=$ sample size: proportional to number of actual voters
$y_{i}=$ number in sample favoring Obama $\sim \operatorname{Bin}\left(T_{i}, \pi_{i}\right)$
$\pi_{i}=$ success probability: true proportion that voted for Obama

- Fixed effects model:

$$
\operatorname{logit}\left(\pi_{i}\right)=\beta_{i}, \quad i=1, \ldots, 51
$$

- Saturated (51 parameters for 51 binomial observations).
- MLEs are sample proportions for each state.
- Logit model with random intercept:

$$
\operatorname{logit}\left(\pi_{i}\right)=u_{i}+\alpha, \quad u_{1}, \ldots, u_{51} \sim \text { i.i.d. } N\left(0, \sigma^{2}\right)
$$

- Two parameters: α and σ^{2}.
- MLEs for random effects model: $\hat{\alpha}=0.042, \hat{o}=0.344$
$>\frac{e^{\hat{\alpha}}}{1+\mathrm{e}^{\alpha}}=0.511$, close to combined sample proportion of 0.52 .
$>\hat{\pi}_{i}$ from fitted random effects model shown on next slide.
They are closer than sample proportions to the true π_{i} :
RMSE $= \begin{cases}0.132, & \text { for sample proportions } \\ 0.085, & \text { for model estimates }\end{cases}$
RMSE is 35.4% smaller.
- How does it work?
> $\hat{\pi}_{i}$ closer to overall proportion than p_{i} ("shrinkage").
$\hat{\pi}_{i}$ varies from 0.414 (MS) to 0.635 (NY), while p_{i} varies from 0.167 (NE) to 1 (HI, VT).
- The difference between $\hat{\pi}_{i}$ and p_{i} tends to be small when T_{i} is large and larger when T_{i} is small.
This is sensible.

		rue	p.smpl	p.hat	MS	20	0.430	0.250	0.414
AK	5	0.379	0.200	0.471	MT	7	0.471	0.286	0.472
AL	29	0.387	0.379	0.450	NC	66	0.497	0.500	. 504
AR	17	0.389	0.235	0.419	ND	5	0.445	0.800	0.548
AZ	35	0.449	0.514	0.512	NE	12	0.416	0.167	0.421
CA	207	0.609	0.589	0.578	NH	11	0.541	0.364	0.475
CO	37	0.537	0.541	0.526	NJ	59	0.571	0.661	0.606
CT	25	0.606	0.640	0.565	NM	13	0.569	0.769	0.582
DC	4	0.925	0.750	0.536	NV	13	0.552	0.462	0.497
DE	6	0.619	0.667	0.534	NY	116	0.629	0.672	0.635
FL	128	0.509	0.492	0.496	OH	87	0.514	0.414	. 44
GA	60	0.469	0.367	0.419	OK	22	0.344	0.318	0.4
HI	7	0.718	1.000	0.593	OR	28	0.568	0.536	0.
IA	23	0.539	0.565	0.533	PA	92	0.545	0.543	. 53
ID	10	0.359	0.400	0.485	RI	7	0.629	0.714	0.54
IL	84	0.618	0.655	0.613	SC	29	0.449	0.448	0.
IN	42	0.498	0.643	0.583	SD	6	0.448	0.833	0.55
KS	19	0.415	0.421	0.478	TN	40	0.418	0.425	0.464
KY	28	0.412	0.429	0.473	TX	123	0.436	0.390	0.416
LA	30	0.399	0.500	0.506	UT	15	0.342	0.267	0.43
MA	47	0.618	0.596	0.560	VA	57	0.526	0.491	0.4
MD	40	0.619	0.575	0.545	VT	5	0.675	1.000	0.
ME	11	0.577	0.636	0.541	WA	46	0.573	0.587	0.554
MI	76	0.573	0.579	0.558	WI	45	0.562	0.489	0.498
MN	44	0.541	0.432	0.466	WV	11	0.425	0.545	0.5
MO	45	. 492	0.44	. 47	WY	4	0.32	0.25	

Remarks

- Specific results of simulation would change if we redid it, but they would be fairly similar.
- Method "borrows strength" from all small areas to improve estimation.
- Typically "shrinks" towards overall average or proportion. Shrinkage is more pronounced for areas with small sample sizes.
- Bias-variance tradeoff.

The next few slides show the R commands that we used to create the simulated survey data, fit the random intercept model, and compute some of the various summaries. Note the use of the extractor functions fitted(), fixef(), and VarCorr().
> datasite <- "http://www.stat.ufl.edu/"
> datadir <- "~presnell/Courses/sta4504-2012sp/Var/"
> datafile <- paste(datasite, datadir, "obama.txt", sep = "")
> obama <- read.table(datafile, header=TRUE)
> names (obama)
[1] "State" "T" "p.true"
> obama\$y <- with(obama, rbinom(length(State), T, p.true))
> obama <- transform(obama, p.smpl = y/T)
> library(lme4)
> obama.fit <- glmer(cbind(y, T - y) ~ (1|State),
data = obama, family = binomial)
> obama\$p.hat <- fitted(obama.fit)
> head(obama, 2)

	State	T	p.true	y	p.smpl	p.hat
1	AK	5	0.379	1	0.20000	0.47069
2	AL	29	0.387	11	0.37931	0.45014

> summary (obama.fit)
Generalized linear mixed model fit by the Laplace approximat Formula: cbind(y, T - y) ~ (1 | State)

Data: obama
AIC BIC logLik deviance

$$
\begin{array}{llll}
103 & 107 & -49.7 & 99.5
\end{array}
$$

Random effects:
Groups Name Variance Std.Dev.
State (Intercept) 0.118 0.344
Number of obs: 51, groups: State, 51

Fixed effects:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
$\begin{array}{lllll}\text { (Intercept) } 0.0424 & 0.0731 & 0.58 & 0.56\end{array}$
> (alpha <- fixef(obama.fit, drop = TRUE))
(Intercept)
0.042428
> (sigma2 <- VarCorr (obama.fit)\$State[1,1])
[1] 0.11808
> (sigma <- sqrt(sigma2))
[1] 0.34362
> (p.smpl.combined <- with(obama, sum(y)/sum(T)))
[1] 0.51952
> (rmse.p.smpl <with (obama, sqrt(mean((p.smpl - p.true)^2))))
[1] 0.13229
> (rmse.p.hat <with(obama, sqrt(mean((p.hat - p.true)^2))))
[1] 0.085448

