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1 Discussion

In light of misunderstandings by readers of earlier drafts of this paper, some discussion of

issues in modeling judgement ranking seems to be needed. The main point to be made is

that modeling the judgement ranking process by conditioning on the unmeasured data is

not only correct, but is a natural and perhaps the only reasonable way to proceed. We

believe that some reflection will convince the reader that this view is correct.

A useful thought experiment is to imagine judgement ranking a pair of books selected at

random from the shelf (without checking the actual number of pages of course). If the two

books selected happen to be very different in length, then they are easy to rank correctly.

However if the numbers of pages of the two books are very nearly the same, it is very

difficult to guess which is actually larger. The crucial point is that it is the actual (ordered)

lengths of the books, X(1), X(2), which largely determine the difficulty of ranking, and hence

the conditional probability that we get it right. Modeling judgement ranking using only

the expected values of X(1), X(2), for example, does not capture this aspect of judgement

ranking at all, since seen through the expected values all samples look the same. Expected

values can at most tell us something about the average difficulty of ranking over all possible

samples, and are thus not a suitable basis for modeling the ranking process itself.

The remainder of this note simply provides detailed calculations for the examples that

were used in the paper to illustrate some errors in the literature. This is all elementary,

and there’s no doubt that much of it could be done more elegantly. The objective is simply

to demonstrate the calculations in sufficient detail that they can be seen to be correct with
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minimal effort on the part of the reader.

2 The First Example

Suppose that k = 2, and that X1, X2 ∼ i.i.d. U(0, 1). We model the judgement ranking

scheme by assuming that conditional on X1, X2,

J1 = 1 with probability (1/2)
[
1 + (X(2) −X(1))

]
. (1)

Note that P (J1 = 1|X1, X2) is close to 1/2 if X(2) − X(1) is small, and is close to 1 if

X(2) −X(1) is close to 1, the maximum difference in this example.

The actual value of F[1](1/2) can be calculated as follows:

F[1](1/2) = P (X[1] ≤ 1/2)

= P (X[1] ≤ 1/2, X1 ≤ 1/2, X2 ≤ 1/2) + P (X[1] ≤ 1/2, X1 > 1/2, X2 > 1/2)

+ P (X[1] ≤ 1/2, X1 ≤ 1/2, X2 > 1/2) + P (X[1] ≤ 1/2, X1 > 1/2, X2 ≤ 1/2)

= P (X1 ≤ 1/2, X2 ≤ 1/2) + 0

+ P (X[1] ≤ 1/2, X1 ≤ 1/2, X2 > 1/2) + P (X[1] ≤ 1/2, X1 > 1/2, X2 ≤ 1/2)

=
1

4
+ 2P (X[1] ≤ 1/2, X1 ≤ 1/2, X2 > 1/2)

=
1

4
+ 2P (J1 = 1, X1 ≤ 1/2, X2 > 1/2)

=
1

4
+ 2

∫ 1

1/2

∫ 1/2

0
P (J1 = 1|X1 = x1, X2 = x2) dx1 dx2

=
1

4
+ 2

∫ 1

1/2

∫ 1/2

0

1

2
[1 + x2 − x1] dx1 dx2 =

5

8
.

But

p11 = P (J1 = 1) = E{P (J1 = 1|X1, X2)} = E{(1/2)[1 + (X(2) −X(1))]}

= (1/2)[1 + ((2/3)− (1/3))] = 2/3 ,

so that p11 = p22 = 1−p12 = 1−p21 = 2/3. Of course F(1)(1/2) = 3/4 and F(2)(1/2) = 1/4,
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so that substitution into equation (10) of the paper yields

p11F(1)(1/2) + p21F(2)(1/2) =
2

3
· 3

4
+

1

3
· 1

4
=

7

12
.

This proves that equation (10) does not yield the correct value of F[1](1/2).

3 The Example with Normal Errors

Suppose that k = 2, and that X1, X2 ∼ i.i.d. N(0, 1). We model the judgement ranking

scheme by assuming that the observer’s perception of X1, X2 is clouded by noise, i.e., that

the judgement ranks assigned to X1 and X2 are actually the joint ranks of T1 and T2, where

Ti = Xi + εi, i = 1, 2, with ε1, ε2 ∼ i.i.d. N(0, σ2), independently of X1, X2. As in the

previous example it is clear that if X1 and X2 are close together (relative to σ) then the

conditional probability of correct ranking will be approximately 1/2, while if if X1 and X2

are well separated, then the conditional probability of correct ranking will be large. This

model was used in a simulation study by Dell and Clutter (1972).

Note that

P (J1 = 1) = P (X1 ≤ X2, T1 ≤ T2) + P (X1 > X2, T1 > T2)

= 2P (X1 ≤ X2, T1 ≤ T2) .

Let φ and Φ represent the standard normal density and distribution functions, respectively.

Then

P (X1 ≤ X2, T1 ≤ T2)

= P (X1 −X2 ≤ 0, X1 −X2 ≤ ε2 − ε1)

= P (X1 −X2 ≤ 0, X1 −X2 ≤ ε2 − ε1, ε2 − ε1 > 0)

+ P (X1 −X2 ≤ 0, X1 −X2 ≤ ε2 − ε1, ε2 − ε1 ≤ 0)

= P (X1 −X2 ≤ 0, ε2 − ε1 > 0) + P (X1 −X2 ≤ ε2 − ε1 ≤ 0)

=
1

4
+

∫ 0

−∞

∫ w2

−∞

1√
2
φ(w1/

√
2)

1√
2σ

φ(w2/(
√

2σ) dw1 dw2 ,

since X1 − X2 ∼ N(0, 2) and ε2 − ε1 ∼ N(0, 2σ2) are independent. With the change of
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variables z1 = w1/
√

2 and z2 = w2/(
√

2σ), this becomes

P (X1 ≤ X2, T1 ≤ T2) =
1

4
+

∫ 0

−∞

∫ σz2

−∞
φ(z1)φ(z2) dz1 dz2

=
1

2
− 1

2π
arctan(σ) .

The last equality follows from purely geometric considerations after noting that the bivariate

density function φ(z1)φ(z2) is spherically symmetric about the origin. Thus we have

p11 = P (J1 = 1) = 1− 1

π
arctan(σ) ,

so that p11 p12

p21 p22

 =

1− arctan(σ)/π arctan(σ)/π

arctan(σ)/π 1− arctan(σ)/π

 . (2)

Note that as σ → 0 (perfect ranking) this converges to the identity matrix, while as σ →∞,

in which case the noise becomes so great that we are effectively choosing the judgement

ranks completely at random, it converges to a matrix with all entries equal to 1/2.

Considering F[1] and F[2], note that

F[1](x) = P (X1 ≤ x, T1 ≤ T2) + P (X2 ≤ x, T1 > T2)

= 2P (X1 ≤ x, T1 ≤ T2) ,

and

F[2](x) = P (X1 ≤ x, T1 > T2) + P (X2 ≤ x, T1 ≤ T2)

= 2P (X1 ≤ x, T1 > T2)

= 2
[
P (X1 ≤ x)− P (X1 ≤ x, T1 ≤ T2)

]
.
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A simple conditioning argument shows that

P (X1 ≤ x, T1 ≤ T2) = P (X1 ≤ x,X2 + ε2 − ε1 ≥ X1)

=

∫ x

−∞
P (X2 + ε2 − ε1 ≥ X1|X1 = z)φ(z) dz

=

∫ x

−∞
P (X2 + ε2 − ε1 ≥ z)φ(z) dz

=

∫ x

−∞
P

(
X2 + ε2 − ε1√

1 + 2σ2
≥ z√

1 + 2σ2

)
φ(z) dz

=

∫ x

−∞

[
1− Φ

(
z/
√

1 + 2σ2
)]
φ(z) dz ,

and this in turn implies that X[1] and X[2] have distribution functions

F[1](x) = 2

∫ x

−∞

[
1− Φ

(
z/
√

1 + 2σ2
)]
φ(z) dz

and

F[2](x) = 2

∫ x

−∞
Φ
(
z/
√

1 + 2σ2
)
φ(z) dz ,

respectively. The corresponding densities are thus

f[1](x) = 2
[
1− Φ

(
x/
√

1 + 2σ2
)]
φ(x)

and

f[2](x) = 2Φ
(
x/
√

1 + 2σ2
)
φ(x) ,

Note that F[1](x) + F[2](x) = 2Φ(x), which we know must hold. Of course the distribution

functions of X(1) and X(2) are given by

F(1)(x) = 1−
[
1− Φ(x)

]2
and

F(2)(x) =
[
Φ(x)

]2
,

respectively, and it is clear at this point that, e.g., F[1](x) 6= p11F(1)(x) + p21F(2)(x), as

claimed elsewhere.
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For explicit verification of this in a specific case, consider x = 0. Here

F[2](0) = 2

∫ 0

−∞
Φ(z/

√
1 + 2σ2)φ(z) dz

= 2

∫ 0

−∞

∫ z/
√
1+2σ2

−∞
φ(y)φ(z) dy dz

=
1

π
arctan(

√
1 + 2σ2) ,

where again the last equality follows from geometric considerations and the fact that

φ(y)φ(z) is a spherically symmetric bivariate density function. Of course

F[1](0) = 2Φ(0)− F[2](0) = 1− 1

π
arctan(

√
1 + 2σ2) .

But

p11F(1)(0) + p21F(2)(0) =
3

4

(
1− 1

π
arctan(σ)

)
+

1

4

( 1

π
arctan(σ)

)
=

3

4
− 1

2π
arctan(σ) ,

and this does agree with the correct expression for F[1](0) for any 0 < σ <∞. For example,

if σ = 1, then F[1](0) = 2/3, while the incorrect expression yields 5/8. Note however that

the two expressions do agree when σ = 0 (perfect ranking) and in the limit as σ → ∞

(completely random judgement ranking).

4 The Sign Test

4.1 Applied to the First Example

Hettmansperger’s equation (5) is

δ2p = 1− 4

k

k∑
j=1

{ k∑
i=1

pij

(
F(i)(0)− 1

2

)}2
, (H5)

while the correct expression is

δ2p = 1− 4

k

k∑
j=1

{
F[j](0)− 1

2

}2
. (H5′)
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To see that these expression are not equivalent, we apply both to the first example (replacing

F(i)(0) and F[i](0) by F(i)(1/2) and F[i](1/2), respectively, to reflect the fact that the median

of the U(0, 1) distribution is 1/2.

We have already established that F[1](1/2) = 5/8. By similar calculations, or merely

from symmetry considerations, F[2](1/2) = 3/8. Since k = 2 in this example, substitution

into the correct expression (H5′) yields

δ2p = 1− 2
{(5

8
− 1

2

)2
+
(3

8
− 1

2

)2}
=

15

16
,

as claimed in the paper.

On the other hand, since F(1)(1/2) = 3/4 and F(2)(1/2) = 1/4, and p11 = p22 = 1−p12 =

1− p21 = 2/3, substitution into the incorrect expression (H5) yields 35/36.

4.2 Applied to the Normal Errors Example

Following the notation in the paper, the correct value for Hettmansperger’s δp in the normal

errors example is

δ2p = 1− 2
{(
F[1](0)− 1

2

)2
+
(
F[2](0)− 1

2

)2}
= 1− 4

[ 1

π
arctan(

√
1 + 2σ2)− 1

2

]2
Hettmansperger’s expression (5) on the other hand yields

δ2p = 1− 2

{[
p11
(
F(1)(0)− 1

2

)
+ p21

(
F(2)(0)− 1

2

)]2
+
[
p12
(
F(1)(0)− 1

2

)
+ p22

(
F(2)(0)− 1

2

)]2}
= 1− 2

{[1

4
p11 −

1

4
p21

]2
+
[1

4
p12 −

1

4
p22

]2}
= 1− 1

8

{[
p11 − p21

]2
+
[
p12 − p22

]2}
= 1− 1

4

[
1− 2

π
arctan(σ)

]2
,

and again this does not agree with the correct answer for any 0 < σ < ∞ (though again

they do agree at σ = 0 and ∞). For example, if σ = 1 the correct value for δp is 8/9, while

the incorrect expression yields 15/16. In fact the incorrect result is exceeds the correct one
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for all −∞ < σ <∞.

5 The Mann-Whitney Test Statistic

Recall that for the Mann-Whitney statistic, h(x, y) = I(x < y), so that h10(x) = 1−G(x)

and h01(y) = F (y), where we assume F and G continuous. Thus, under ranked set sampling

the asymptotic variance of U is given by Theorem 2 of the paper, with γr· = 1−E[G(X[r])]

and γ·s = E[F (Y[s])]. When F = G, the usual null hypothesis, θ = 1/2, and ζ10 = ζ01 =

1/12.

If equation (10) of the paper holds, then

γr· = 1−
∫ ∞
−∞

G(x) dF[r](x) = 1−
k∑
i=1

pir

∫ ∞
−∞

G(x) dF(i)(x)

= 1−
k∑
i=1

pirE[G(X(i))] ,

and similarly γ·s =
∑l

i=1 qisE[F (Y(i))], where the qij are defined in the same way as the pij

but for the second sample. If F = G, the usual null hypothesis, then G(X(i)) is distributed

like the ith order statistic from a sample of k i.i.d. U(0, 1) random variables, and thus

E[G(X(i))] = i/(k + 1). Similarly, E[F (Y(i))] = i/(l + 1). Thus under the null hypothesis

we have

γr· = 1− 1

k + 1

k∑
i=1

ipir (3)

γ·s =
1

l + 1

l∑
i=1

iqis . (4)

Of course none of the results of this paragraph can be expected to hold for general judgement

ranking schemes, but we note that after accomodating differences in notation, they provide

simple alternatives to the more complicated expressions of Bohn and Wolfe (1994). In case

ranking is perfect, so that the matrices of pijs and qijs are identity matrices, these reduce to

γr· = 1−r/(k+1) and γ·s = s/(l+1), providing simple alternatives to the more complicated

expression in Bohn and Wolfe (1992).
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5.1 Applied to the First Example

Now assume that both samples are drawn form U(0, 1) populations with the judgement

ranking scheme as described in the first example. Then

γ1· = 1− E(X[1]) = 1− E(X(J1)) = 1− E{E(X(J1)|X1, X2)}

= 1− E{X(1)P (J1 = 1|X1, X2) +X(2)P (J1 = 2|X1, X2)}

= 1− E{(1/2)[1 + (X(2) −X(1))]X(1) + (1/2)[1− (X(2) −X(1))]X(2)}

= 1− (1/2)E{X(1) +X(2) − (X(2) −X(1))
2}

= 1− (1/2)(1/3 + 2/3− 1/6) = 7/12 ,

where we have used the fact that

E{(X(2) −X(1))
2} =

∫ 1

0

∫ x1

0
(x2 − x1)2 dx1 dx2 = 1/6 .

Similar calculations show that

γ1· = 1− E(X[1]) = 7/12 γ2· = 1− E(X[2]) = 5/12

γ·1 = E(Y[1]) = 5/12 γ·2 = E(Y[2]) = 7/12

Thus

2ζ∗10 = 2ζ∗01 =
1

12
− 1

2

{(
7

12
− 1

2

)2

+

(
5

12
− 1

2

)2}
=

11

144
.

On the other hand, suppose that we naively assume that equation (10) of the paper

holds, and thus proceed to apply formulas (3) and (4) above. Since p11 = p22 = 1 − p12 =

1− p21 = 2/3, we then obtain

γ1· = 1− 1

3

(
(1)
(2

3

)
+ (2)

(1

3

))
=

5

9
.

Similar calculations show that γ1· = γ·2 = 5/9 and γ2· = γ·1 = 4/9, so that

2ζ∗10 = 2ζ∗01 =
1

12
− 1

2

{(
5

9
− 1

2

)2

+

(
4

9
− 1

2

)2}
=

13

162
.
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5.2 Applied to the Normal Errors Example

Assume that both samples, populations, and judgement ranking schemes follow the setup

of the normal errors example: both populations follow a standard normal distribution, so

that F = G = Φ; k = l = 2; and the judgement ranking process for both samples is clouded

by Gaussian noise with the same variance, σ2. Then

γ1· = E[1− Φ(X[1])] =

∫ ∞
−∞

[1− Φ(x)]f[1](x) dx

= 2

∫ ∞
−∞

[1− Φ(x)]
[
1− Φ

(
x/
√

1 + 2σ2
)]
φ(x) dx

= 2E
{

[1− Φ(Z)]
[
1− Φ

(
Z/
√

1 + 2σ2
)]}

,

where Z ∼ N(0, 1). Either by noting that both Φ(Z) and Φ(Z/
√

1 + 2σ2) have expectation

1/2, or by using the fact the Z is equal in distribution to −Z, it is easily seen that this in

turn can be written more simply as

γ1· = 2E
{

Φ(Z)Φ
(
Z/
√

1 + 2σ2
)}
.

Similarly we find that

γ1· = 1− γ2· = 1− γ·1 = γ·2 = 2E
{

Φ(Z)Φ
(
Z/
√

1 + 2σ2
)}
,

and thus the asymptotic variance is correctly calculated using

2ζ∗10 = 2ζ∗01 =
1

12
− 1

2

[(
γ1· −

1

2

)2

+

(
1− γ1· −

1

2

)2]
=

1

12
−
(
γ1· −

1

2

)2

=
1

12
−
(

2E
{

Φ(Z)Φ
(
Z/
√

1 + 2σ2
)}
− 1

2

)2

.

Alternatively, suppose that we naively assume that equation (10) of the paper holds and

apply (3) and (4). Then since p11 = p22 = 1− p12 = 1− p21 = 1− arctan(σ)/π, we obtain

γ1· = 1− 1

3

(
(1)
(

1− 1

π
arctan(σ)

)
+ (2)

( 1

π
arctan(σ)

))
=

2

3
− 1

3π
arctan(σ) .
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Similar calculations show that

γ1· = 1− γ2· = 1− γ·1 = γ·2 =
2

3
− 1

3π
arctan(σ) ,

so that

2ζ∗10 = 2ζ∗01 =
1

12
− 1

2

[(
γ1· −

1

2

)2

+

(
1− γ1· −

1

2

)2]
=

1

12
−
(
γ1· −

1

2

)2

=
1

12
−
(

1

6
− 1

3π
arctan(σ)

)2

=
1

12
− 1

9

(
1

2
− 1

π
arctan(σ)

)2

.

Once again, although this agrees with the correct expression at σ = 0 and σ =∞, they do

not agree for any 0 < σ < ∞. For example, if σ = 0.5, then numerical integration shows

that the correct value of 2ζ∗10 = 2ζ∗01 is .0616, while the second, incorrect formula yields

11/144 ≈ .0695, which is about thirteen percent too large.
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